Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 62-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random motion at constant finite speed in the space $R^3$ subject to the control of a homogeneous Poisson process and with uniform choice of directions on the unit 3-sphere. We obtain the explicit forms of the conditional characteristic function and conditional distribution when one change of direction occurs. We show that this conditional distribution represents a discontinuous term of the transition function of the motion.
@article{BASM_2006_2_a6,
     author = {Alexander D. Kolesnik},
     title = {Discontinuous term of the distribution for {Markovian} random evolution in~$\mathrm R^3$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {62--68},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 62
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/
LA  - en
ID  - BASM_2006_2_a6
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 62-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/
%G en
%F BASM_2006_2_a6
Alexander D. Kolesnik. Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 62-68. http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/

[1] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series and Products, Academic Press, NY, 1980 | Zbl

[2] Kolesnik A. D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Prob., 42 (2005), 1168–1182 | DOI | MR | Zbl

[3] Masoliver J., Porrá J. M., Weiss G. H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[4] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR

[5] Stadje W., “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl