Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 62-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random motion at constant finite speed in the space $R^3$ subject to the control of a homogeneous Poisson process and with uniform choice of directions on the unit 3-sphere. We obtain the explicit forms of the conditional characteristic function and conditional distribution when one change of direction occurs. We show that this conditional distribution represents a discontinuous term of the transition function of the motion.
@article{BASM_2006_2_a6,
     author = {Alexander D. Kolesnik},
     title = {Discontinuous term of the distribution for {Markovian} random evolution in~$\mathrm R^3$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {62--68},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 62
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/
LA  - en
ID  - BASM_2006_2_a6
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 62-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/
%G en
%F BASM_2006_2_a6
Alexander D. Kolesnik. Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 62-68. http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/