Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 62-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the random motion at constant finite speed in the space $R^3$ subject to the control of a homogeneous Poisson process and with uniform choice of directions on the unit 3-sphere. We obtain the explicit forms of the conditional characteristic function and conditional distribution when one change of direction occurs. We show that this conditional distribution represents a discontinuous term of the transition function of the motion.
@article{BASM_2006_2_a6,
author = {Alexander D. Kolesnik},
title = {Discontinuous term of the distribution for {Markovian} random evolution in~$\mathrm R^3$},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {62--68},
publisher = {mathdoc},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/}
}
TY - JOUR AU - Alexander D. Kolesnik TI - Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2006 SP - 62 EP - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/ LA - en ID - BASM_2006_2_a6 ER -
%0 Journal Article %A Alexander D. Kolesnik %T Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2006 %P 62-68 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/ %G en %F BASM_2006_2_a6
Alexander D. Kolesnik. Discontinuous term of the distribution for Markovian random evolution in~$\mathrm R^3$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 62-68. http://geodesic.mathdoc.fr/item/BASM_2006_2_a6/