On the coproducts of cyclics in commutative modular and semisimple group rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 45-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We study certain properties of the coproducts (= direct sums) of cyclic groups in commutative modular and semisimple group rings. Our results strengthen a statement due to T. Zh. Mollov (Pliska, Stud. Math. Bulgar., 1981) and also they may be interpreted as a natural continuation of a recent investigation of ours (Serdica Math. J., 2003).
@article{BASM_2006_2_a4,
     author = {Peter Danchev},
     title = {On the coproducts of cyclics in commutative modular and semisimple group rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {45--52},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a4/}
}
TY  - JOUR
AU  - Peter Danchev
TI  - On the coproducts of cyclics in commutative modular and semisimple group rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 45
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a4/
LA  - en
ID  - BASM_2006_2_a4
ER  - 
%0 Journal Article
%A Peter Danchev
%T On the coproducts of cyclics in commutative modular and semisimple group rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 45-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a4/
%G en
%F BASM_2006_2_a4
Peter Danchev. On the coproducts of cyclics in commutative modular and semisimple group rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 45-52. http://geodesic.mathdoc.fr/item/BASM_2006_2_a4/