On the Division of Abstract Manifolds in Cubes
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 29-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in the class of abstract multidimensional manifolds without borders only torus $V_1^n$ of dimension $n\ge 1$ can be divided in abstract cubes with the property: every face $I^m$ from $V_1^n$ is shared by $2^{n-m}$ cubes, $m=0,1,\ldots,n-1$. The abstract torus $V_1^n$ is realized in $E^d$, $n+1\le d\le 2n+1$, so it results that in the class of all $n$-dimensional combinatorial manifolds [1] only torus respects this propriety. Torus is autodual because of this propriety.
@article{BASM_2006_2_a2,
     author = {Mariana Bujac and Sergiu Cataranciuc and Petru Soltan},
     title = {On the {Division} of {Abstract} {Manifolds} in {Cubes}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--34},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a2/}
}
TY  - JOUR
AU  - Mariana Bujac
AU  - Sergiu Cataranciuc
AU  - Petru Soltan
TI  - On the Division of Abstract Manifolds in Cubes
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 29
EP  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a2/
LA  - en
ID  - BASM_2006_2_a2
ER  - 
%0 Journal Article
%A Mariana Bujac
%A Sergiu Cataranciuc
%A Petru Soltan
%T On the Division of Abstract Manifolds in Cubes
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 29-34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a2/
%G en
%F BASM_2006_2_a2
Mariana Bujac; Sergiu Cataranciuc; Petru Soltan. On the Division of Abstract Manifolds in Cubes. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 29-34. http://geodesic.mathdoc.fr/item/BASM_2006_2_a2/