The property of universality for some monoid algebras over non-commutative rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 102-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We define on an arbitrary ring $A$ a family of mappings $(\sigma_{x,y})$ subscripted with elements of a multiplicative monoid $G$. The assigned properties allow to call these mappings derivations of the ring $A$. A monoid algebra of $G$ over $A$ is constructed explicitly, and the universality property of it is shown.
@article{BASM_2006_2_a11,
     author = {Elena P. Cojuhari},
     title = {The property of universality for some monoid algebras over non-commutative rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {102--105},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/}
}
TY  - JOUR
AU  - Elena P. Cojuhari
TI  - The property of universality for some monoid algebras over non-commutative rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 102
EP  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/
LA  - en
ID  - BASM_2006_2_a11
ER  - 
%0 Journal Article
%A Elena P. Cojuhari
%T The property of universality for some monoid algebras over non-commutative rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 102-105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/
%G en
%F BASM_2006_2_a11
Elena P. Cojuhari. The property of universality for some monoid algebras over non-commutative rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 102-105. http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/