The property of universality for some monoid algebras over non-commutative rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 102-105
Voir la notice de l'article provenant de la source Math-Net.Ru
We define on an arbitrary ring $A$ a family of mappings $(\sigma_{x,y})$ subscripted with elements of a multiplicative monoid $G$. The assigned properties allow to call these mappings derivations of the ring $A$. A monoid algebra of $G$ over $A$ is constructed explicitly, and the universality property of it is shown.
@article{BASM_2006_2_a11,
author = {Elena P. Cojuhari},
title = {The property of universality for some monoid algebras over non-commutative rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {102--105},
publisher = {mathdoc},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/}
}
TY - JOUR AU - Elena P. Cojuhari TI - The property of universality for some monoid algebras over non-commutative rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2006 SP - 102 EP - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/ LA - en ID - BASM_2006_2_a11 ER -
%0 Journal Article %A Elena P. Cojuhari %T The property of universality for some monoid algebras over non-commutative rings %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2006 %P 102-105 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/ %G en %F BASM_2006_2_a11
Elena P. Cojuhari. The property of universality for some monoid algebras over non-commutative rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 102-105. http://geodesic.mathdoc.fr/item/BASM_2006_2_a11/