On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 95-101

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak M$ be the multiplication group of a commutative Moufang loop $Q$. In this paper it is proved that if all infinite abelian subgroups of $\mathfrak M$ are normal in $\mathfrak M$, then $Q$ is associative. If all infinite nonabelian subgroups of $\mathfrak M$ are normal in $\mathfrak M$, then all nonassociative subloops of $Q$ are normal in $Q$, all nonabelian subgroups of $\frak M$ are normal in $\mathfrak M$ and the commutator subgroup $\mathfrak M'$ is a finite 3-group.
@article{BASM_2006_2_a10,
     author = {N. T. Lupashco},
     title = {On commutative {Moufang} loops with some restrictions for subgroups of its multiplication groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--101},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a10/}
}
TY  - JOUR
AU  - N. T. Lupashco
TI  - On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 95
EP  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a10/
LA  - en
ID  - BASM_2006_2_a10
ER  - 
%0 Journal Article
%A N. T. Lupashco
%T On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 95-101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a10/
%G en
%F BASM_2006_2_a10
N. T. Lupashco. On commutative Moufang loops with some restrictions for subgroups of its multiplication groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 95-101. http://geodesic.mathdoc.fr/item/BASM_2006_2_a10/