Dynamic programming approach for solving discrete optimal control problem and its multicriterion version
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Time discrete systems determined by systems of difference equations are considered. The characterizations of their optimal trajectories with given starting and final states is studied. An algorithm based on dynamic programming technique for determining such trajectories is proposed. In additional multicriterion version for considered control model is formulated and a general algorithm for determining Pareto solution is proposed.
@article{BASM_2006_1_a3,
     author = {D. Drucioc and D. Lozovanu and M. Popovici},
     title = {Dynamic programming approach for solving discrete optimal control problem and its multicriterion version},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {31--38},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_1_a3/}
}
TY  - JOUR
AU  - D. Drucioc
AU  - D. Lozovanu
AU  - M. Popovici
TI  - Dynamic programming approach for solving discrete optimal control problem and its multicriterion version
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 31
EP  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_1_a3/
LA  - en
ID  - BASM_2006_1_a3
ER  - 
%0 Journal Article
%A D. Drucioc
%A D. Lozovanu
%A M. Popovici
%T Dynamic programming approach for solving discrete optimal control problem and its multicriterion version
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 31-38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_1_a3/
%G en
%F BASM_2006_1_a3
D. Drucioc; D. Lozovanu; M. Popovici. Dynamic programming approach for solving discrete optimal control problem and its multicriterion version. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 31-38. http://geodesic.mathdoc.fr/item/BASM_2006_1_a3/

[1] Lozovanu D., Pickl S., “An approach for an algorithmic solution of discrete optimal control problems and their game-theoretical extension”, Central European Journal of Operation Research, 14:4 (2006), 357–375 | DOI | MR | Zbl

[2] Bellman R., Kalaba R., Dynamic programming and modern control theory, Academic Press, New York–London, 1965 | MR

[3] Boltyanskii V. G., Optimal control of discrete systems, Nauka, Moscow, 1973 | MR

[4] Krabs W., Pickl S., Analysis, Controllability and Optimization of Time-Discrete Systems and Dynamical Games, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin–Heidelberg, 2003 | MR

[5] Lozovanu D. D., “The network models of discrete optimal control problem and dynamic games with $p$ players”, Discrete mathematics and Applications, 2001, no. 4(13), 126–143 | MR | Zbl

[6] Lozovanu D., Pickl S., “Polynomial time algorithm for determining optimal strategies”, Electronic Notes in Discrete Mathematics, 13 (2003), 154–158 | DOI | MR

[7] Lozovanu D., Pickl S., “A Special Dynamic Programming technique for Multiobjective Discrete Control and for Dynamic Games on Graph - Based Networks”, CTWO4 Workshop on Graphs and Combinatorial Optimization, Milano, 2004, 184–188 | MR