A~test for completeness with respect to implicit reducibility in the chain super-intutionistic logics
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 23-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine chain logics $C_2,C_3,\dots$, which are intermediary between classical and intuitionistic logics. They are also the logics of pseudo-Boolean algebras of type $\langle E_m,\,\vee,\supset,\neg\rangle$, where $E_m$ is the chain $0\tau_ 1\tau_2\dots\tau_{m-2}1$ ($m=2,3,\dots$). The formula $F$ is called to be implicitly expressible in logic $L$ by the system $\Sigma$ of formulas if the relation $$ L\vdash(F\sim q)\sim((G_1\sim H_1)\\dots\(C_k\sim H_k)) $$ is true, where $q$ do not appear in $F$, and formula$G_i$ and $H_i$, for $i=1,\dots, k$, are explicitly expressible in $L$ via $\Sigma$ The formula $F$ is said to be implicitly reducible in logic $L$ to formulas of $\Sigma$ if there exists a finite sequence of formulas $G_1,G_2,\dots,G_l$ where $G_l$ coincides with $F$ and for $j = 1,\dots,l$ the formula $G_j$ is implicitly expressible in $L$ by $\Sigma\cup\{G_1,\dots,G_{j-1}\}$. The system $\Sigma$ is called complete relative to implicit reducibility in logic $L$ if any formula is implicitly reducible in $L$ to $\Sigma$. The paper contains the criterion for recognition of completeness with respect to implicit reducibility in the logic $C_m$, for any $m=2,3,\dots$ . The criterion is based on 13 closed pre-complete classes of formulas.
@article{BASM_2006_1_a2,
     author = {I. V. Cucu},
     title = {A~test for completeness with respect to implicit reducibility in the chain super-intutionistic logics},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--30},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_1_a2/}
}
TY  - JOUR
AU  - I. V. Cucu
TI  - A~test for completeness with respect to implicit reducibility in the chain super-intutionistic logics
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 23
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_1_a2/
LA  - en
ID  - BASM_2006_1_a2
ER  - 
%0 Journal Article
%A I. V. Cucu
%T A~test for completeness with respect to implicit reducibility in the chain super-intutionistic logics
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 23-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_1_a2/
%G en
%F BASM_2006_1_a2
I. V. Cucu. A~test for completeness with respect to implicit reducibility in the chain super-intutionistic logics. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 23-30. http://geodesic.mathdoc.fr/item/BASM_2006_1_a2/