Properties of one-sided ideals of topological rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
A continuous ring isomorphism $\nu\colon(R,\tau)\to(\widehat{R},\widehat{\tau})$ is said to be semitopological from the left (right) in the class $\mathfrak R$ provided $(R,\tau)$ is a left ideal (right ideal, ideal) of a topological ring $(\widetilde{R},\widetilde{\tau})\in\mathfrak R$ and $\nu=\widetilde{\nu}|_R$ for a topological homomorphism $\widetilde{\nu}\colon(\widetilde{R},\widetilde{\tau})\to(\widehat{R},\widehat{\tau})$. The article contains several criteria for a continuous homomorphism to be semi-topological from the left (right).
@article{BASM_2006_1_a0,
author = {V. I. Arnautov},
title = {Properties of one-sided ideals of topological rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {3--14},
year = {2006},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2006_1_a0/}
}
V. I. Arnautov. Properties of one-sided ideals of topological rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 3-14. http://geodesic.mathdoc.fr/item/BASM_2006_1_a0/
[1] Arnautov V. I., “A semitopological isomorphism of topological rings”, Mat. issledovaniya, no. 4:2(12), Stiintsa, Kishinev, 1969, 3–16 (in Russian) | MR
[2] Arnautov V. I., “Semitopological isomorphism of topological groups”, Buletinul Academiei de Sţiinţe a Republicii Moldova, Matematica, 2004, no. 1(44), 15–25 | MR | Zbl
[3] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, New York–Basel–Hong Kong, 1996 | MR | Zbl