A~loop transversal in a~sharply 2-transitive permutation loop
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 101-114

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known theorem of M. Hall about the description of a finite sharply 2-transitive permutation group is generalized for the case of permutation loops. It is shown that the identity permutation with the set of all fixed-point-free permutations in a finite sharply 2-transitive permutation loop forms a loop transversal by its proper subloop – a stabilizator of one symbol.
@article{BASM_2005_3_a8,
     author = {Eugene Kuznetsov},
     title = {A~loop transversal in a~sharply 2-transitive permutation loop},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {101--114},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a8/}
}
TY  - JOUR
AU  - Eugene Kuznetsov
TI  - A~loop transversal in a~sharply 2-transitive permutation loop
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 101
EP  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_3_a8/
LA  - en
ID  - BASM_2005_3_a8
ER  - 
%0 Journal Article
%A Eugene Kuznetsov
%T A~loop transversal in a~sharply 2-transitive permutation loop
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 101-114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_3_a8/
%G en
%F BASM_2005_3_a8
Eugene Kuznetsov. A~loop transversal in a~sharply 2-transitive permutation loop. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 101-114. http://geodesic.mathdoc.fr/item/BASM_2005_3_a8/