Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 63-70
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article $n$-ary analogs of the concept of normalizer of a subgroup of a group are constructed. It is proved that in an $n$-ary group the role of these $n$-ary analogs play the concepts of a normalizer and seminormalizer of $n$-ary subgroup in $n$-ary group. A connection of these analogs with its binary prototypes is established.
@article{BASM_2005_3_a5,
author = {A. M. Gal'mak},
title = {Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {63--70},
publisher = {mathdoc},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a5/}
}
TY - JOUR AU - A. M. Gal'mak TI - Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 63 EP - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2005_3_a5/ LA - en ID - BASM_2005_3_a5 ER -
A. M. Gal'mak. Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 63-70. http://geodesic.mathdoc.fr/item/BASM_2005_3_a5/