Some $n$-ary analogs of the notion of a normalizer of an $n$-ary subgroup in a group
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 63-70
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article $n$-ary analogs of the concept of normalizer of a subgroup of a group are constructed. It is proved that in an $n$-ary group the role of these $n$-ary analogs play the concepts of a normalizer and seminormalizer of $n$-ary subgroup in $n$-ary group. A connection of these analogs with its binary prototypes is established.
@article{BASM_2005_3_a5,
author = {A. M. Gal'mak},
title = {Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {63--70},
year = {2005},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a5/}
}
TY - JOUR AU - A. M. Gal'mak TI - Some $n$-ary analogs of the notion of a normalizer of an $n$-ary subgroup in a group JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 63 EP - 70 IS - 3 UR - http://geodesic.mathdoc.fr/item/BASM_2005_3_a5/ LA - en ID - BASM_2005_3_a5 ER -
A. M. Gal'mak. Some $n$-ary analogs of the notion of a normalizer of an $n$-ary subgroup in a group. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 63-70. http://geodesic.mathdoc.fr/item/BASM_2005_3_a5/
[1] Post E. L., “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR | Zbl
[2] Belousov V. D., $n$-Ary quasigroups, Shtiinta, Kishinev, 1972 | MR
[3] Rusakov S. A., Algebraic $n$-ary systems, Navuka i Tehnika, Minsk, 1992
[4] Gal'mak A. M., $n$-ary groups, F. Skorina Gomel' State University, Gomel', 2003
[5] Gal'mak A. M., Congruences of poliadic groups, Belarusskaya navuka, Minsk, 1999