On Commutativity and Mediality of Polyagroup Cross Isomorphs
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 141-152
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of isotopy (cross isomorphism) of $n$-ary operations can be got from the well-known notion of isotopy (isomorphism) by replacing one of its components with a $k$-ary $m$-invertible operation [1, 2]. The idea of consideration of cross isotopy belongs to V. D. Belousov [3], who defined it for binary quasigroups.
In the paper necessary and sufficient conditions for commutativity and mediality of a polyagroup cross isomorph (when $n>2k$) are determined. A neutrality criterion of an arbitrary element is stated.
@article{BASM_2005_3_a11,
author = {F. M. Sokhatsky and O. V. Yurevych},
title = {On {Commutativity} and {Mediality} of {Polyagroup} {Cross} {Isomorphs}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {141--152},
publisher = {mathdoc},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/}
}
TY - JOUR AU - F. M. Sokhatsky AU - O. V. Yurevych TI - On Commutativity and Mediality of Polyagroup Cross Isomorphs JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 141 EP - 152 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/ LA - en ID - BASM_2005_3_a11 ER -
F. M. Sokhatsky; O. V. Yurevych. On Commutativity and Mediality of Polyagroup Cross Isomorphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 141-152. http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/