On Commutativity and Mediality of Polyagroup Cross Isomorphs
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 141-152

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of isotopy (cross isomorphism) of $n$-ary operations can be got from the well-known notion of isotopy (isomorphism) by replacing one of its components with a $k$-ary $m$-invertible operation [1, 2]. The idea of consideration of cross isotopy belongs to V. D. Belousov [3], who defined it for binary quasigroups. In the paper necessary and sufficient conditions for commutativity and mediality of a polyagroup cross isomorph (when $n>2k$) are determined. A neutrality criterion of an arbitrary element is stated.
@article{BASM_2005_3_a11,
     author = {F. M. Sokhatsky and O. V. Yurevych},
     title = {On {Commutativity} and {Mediality} of {Polyagroup} {Cross} {Isomorphs}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {141--152},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/}
}
TY  - JOUR
AU  - F. M. Sokhatsky
AU  - O. V. Yurevych
TI  - On Commutativity and Mediality of Polyagroup Cross Isomorphs
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 141
EP  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/
LA  - en
ID  - BASM_2005_3_a11
ER  - 
%0 Journal Article
%A F. M. Sokhatsky
%A O. V. Yurevych
%T On Commutativity and Mediality of Polyagroup Cross Isomorphs
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 141-152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/
%G en
%F BASM_2005_3_a11
F. M. Sokhatsky; O. V. Yurevych. On Commutativity and Mediality of Polyagroup Cross Isomorphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 141-152. http://geodesic.mathdoc.fr/item/BASM_2005_3_a11/