Strong Stability of Linear Symplectic Actions and the Orbit Method
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 99-103

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the orbit method we give necessary and sufficient conditions for a linear symplectic action of the group $r^m$ to be strongly stable. this criterion generalizes the respective one stated for linear hamiltonian systems by cushman and kelly.
@article{BASM_2005_2_a7,
     author = {Z. Rzesz\'otko},
     title = {Strong {Stability} of {Linear} {Symplectic} {Actions} and the {Orbit} {Method}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--103},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/}
}
TY  - JOUR
AU  - Z. Rzeszótko
TI  - Strong Stability of Linear Symplectic Actions and the Orbit Method
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 99
EP  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/
LA  - en
ID  - BASM_2005_2_a7
ER  - 
%0 Journal Article
%A Z. Rzeszótko
%T Strong Stability of Linear Symplectic Actions and the Orbit Method
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 99-103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/
%G en
%F BASM_2005_2_a7
Z. Rzeszótko. Strong Stability of Linear Symplectic Actions and the Orbit Method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 99-103. http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/