Strong Stability of Linear Symplectic Actions and the Orbit Method
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 99-103
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the orbit method we give necessary and sufficient conditions for a linear symplectic action of the group $r^m$ to be strongly stable. this criterion generalizes the respective one stated for linear hamiltonian systems by cushman and kelly.
@article{BASM_2005_2_a7,
author = {Z. Rzesz\'otko},
title = {Strong {Stability} of {Linear} {Symplectic} {Actions} and the {Orbit} {Method}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {99--103},
publisher = {mathdoc},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/}
}
TY - JOUR AU - Z. Rzeszótko TI - Strong Stability of Linear Symplectic Actions and the Orbit Method JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 99 EP - 103 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/ LA - en ID - BASM_2005_2_a7 ER -
Z. Rzeszótko. Strong Stability of Linear Symplectic Actions and the Orbit Method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 99-103. http://geodesic.mathdoc.fr/item/BASM_2005_2_a7/