An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 77-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the following equation \begin{equation*} \bigl((I-\lambda K)\varphi\bigr)(s)=\varphi(s)-\lambda\int\limits_a^bK(s,t)\varphi(t)\,dt=f(s). \end{equation*} Assume that the complex-valued kernel $K(s,t)$ is defined on $(a-\varepsilon,b+\varepsilon)\times(a-\varepsilon,b+\varepsilon)$ for some $\varepsilon>0$ and \begin{gather*} \|K\|_2^2=\int\limits_a^b|K(s,t)|^2\,ds\,dt, \\ p(s,t)=\lambda K(s,t)+\overline{\lambda}\,\overline{K(t,s)}-|\lambda|^2\int\limits_a^b\overline{K(\xi,s)}K(\xi,t)\,d\xi. \end{gather*} Consider the following mapping \begin{equation*} f\colon[a,b]\ni\xi\to p(s,\xi)p(\xi,t)\in L_2([a,b]\times[a,b]). \end{equation*} If the function $f$ is integrable according to definition of the Riemann integral (as the function with values in the space $L_2([a,b]\times[a,b])$), then the kernel of the square of the integral operator \begin{equation*} (P\varphi)(s)=\int\limits_a^bp(s,t)\varphi(t)\,dt \end{equation*} can be approximated by a finite dimensional kernel. The formula $(I-P)^+=(I-P^2)^+(I+P)$ and the persistency of the operator $(I-P^2)^+$ with respect to perturbations of a special type are proved. For any $\lambda\neq 0$ we find approximations of the function $\varphi$ which minimizes functional $\|(I-\lambda K)\varphi-f\|_2$ and has the least norm in $L_2[a,b]$ among all functions minimizing the above mentioned functional. Simultaneously we find approximations of the kernel and orthocomplement to the image of the operator $I-\lambda K$ if $\lambda\neq 0$ is a characteristic number. The corresponding approximation errors are obtained.
@article{BASM_2005_2_a5,
     author = {Alexander Kouleshoff},
     title = {An approximate solution of the {Fredholm} type equation of the second kind for any $\lambda\ne 0$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {77--93},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/}
}
TY  - JOUR
AU  - Alexander Kouleshoff
TI  - An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 77
EP  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/
LA  - en
ID  - BASM_2005_2_a5
ER  - 
%0 Journal Article
%A Alexander Kouleshoff
%T An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 77-93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/
%G en
%F BASM_2005_2_a5
Alexander Kouleshoff. An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 77-93. http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/

[1] Lovitt W. V., Linear Integral Equatuations, McGrow-Hill, New York, 1924

[2] Smithies F., Integral Equations, Cambridge University Press, Cambridge, 1958 | MR | Zbl

[3] Edwards R. E., Functional Analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965 | MR | Zbl

[4] Verlan A. F., Syzikoff V. S., Integral Equations: methods, algorithms, programs, Naukova Dumka, Kiev, 1986 | MR

[5] Dzyadyk V. K., Approximation methods for soliny differential and integral equations, Naukova Dumka, Kiev, 1988 | MR

[6] Ben-Israel A., Greville T. N. E., Generalized inverses: Theory and applications, Wiley-Intersci., New York, 1974 | MR | Zbl

[7] Desoer C. A., Whalen B. H., “A note of pseudoinverses”, J. Soc. Indust. Appl. Math., 11 (1963), 442–447 | DOI | MR | Zbl

[8] Bouldin R., “Closed Range and Relative Regularity for Products”, Journal of Mathematical Analysis and Applications, 61 (1977), 397–403 | DOI | MR | Zbl

[9] Izumino S., “The product of operators with closed range and on extension of the reverse order law”, Tôhoku Math. Journ., 34 (1982), 43–52 | DOI | MR | Zbl

[10] Ivanov V. K., “About linear incorrect tasks”, Rep. AN USSR, 145:2 (1962), 270–272 | MR | Zbl

[11] Ivanov V. K., “About the approximated solutions of the operator equations of the first kind”, Journal of Computational Mathematics and Mathematical Physics, 6:6 (1966), 1089–1094 | MR | Zbl

[12] Vainikko G. M., Veretennikoff A. Yu., Iterative procedures in incorrect tasks, Nauka, Moscow, 1986

[13] Shafiev R. A., “About a stability of a pseudo-inversion”, Izv. AN Azerbaydjan SSR, 3 (1980), 3–10 | MR | Zbl

[14] Krasnoselskiy M. A., Vaynikko G. M., Zabreyko P. P., Rutickiy Ya. B., Stecenko V. Ya., Approximated solution of the operator equations, Nauka, Moscow, 1969

[15] Izumino S., “Inequalities on operators with closed range”, Math. Japonica, 25:4 (1980), 423–429 | MR | Zbl

[16] Pytiev Yu. P., Mathematical methods of interpretation of experiment, Vishaya shkola, Moscow, 1989

[17] Ikramov H. D., Matinfar M., “About computer-algebraic procedures for a pseudoinversion of matrixes”, Journal of Computational Mathematics and Mathematical Physics, 43:2 (2003), 163–168 | MR | Zbl

[18] Kuleshov A. A., “The Approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne0$. Analytic methods of analysis and differential equations”, International Conference (September 4–9, 2003, Minsk, Belarus), 105–106

[19] Atkinson K. E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, Cambridge, 1997 | MR

[20] Bateman H., “On the Numerical Solution of Linear Integral Equations”, Proc. Roy. Soc. (A), 34:705 (1966)

[21] Cochran J. A., The Analysis of Linear Integral Equations, McGraw-Hill Book Co., New York, 1972 | MR | Zbl

[22] Corduneanu C., Integral Equations and Applications, Cambridge Univ. Press, Cambridge–New York, 1972 | MR

[23] Delves L. M., Mohamed J. L., Computational Methods for Integral Equations, Cambridge Univ. Press, Cambridge–New York, 1985 | MR | Zbl

[24] Hackbusch W., Integral Equations: Theory and Numerical Treatment, Birkhauser Verlag, Boston, 1995 | MR | Zbl

[25] Jerry A. L., Introduction to Integral Equations with Applications, Marcel Dekker, New York–Basel, 1985

[26] Mikhlin S. G., Prössdorf S., Singular Integral Operators, Springer Verlag, Berlin–New York, 1986 | MR