An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 77-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the following equation \begin{equation*} \bigl((I-\lambda K)\varphi\bigr)(s)=\varphi(s)-\lambda\int\limits_a^bK(s,t)\varphi(t)\,dt=f(s). \end{equation*} Assume that the complex-valued kernel $K(s,t)$ is defined on $(a-\varepsilon,b+\varepsilon)\times(a-\varepsilon,b+\varepsilon)$ for some $\varepsilon>0$ and \begin{gather*} \|K\|_2^2=\int\limits_a^b|K(s,t)|^2\,ds\,dt, \\ p(s,t)=\lambda K(s,t)+\overline{\lambda}\,\overline{K(t,s)}-|\lambda|^2\int\limits_a^b\overline{K(\xi,s)}K(\xi,t)\,d\xi. \end{gather*} Consider the following mapping \begin{equation*} f\colon[a,b]\ni\xi\to p(s,\xi)p(\xi,t)\in L_2([a,b]\times[a,b]). \end{equation*} If the function $f$ is integrable according to definition of the Riemann integral (as the function with values in the space $L_2([a,b]\times[a,b])$), then the kernel of the square of the integral operator \begin{equation*} (P\varphi)(s)=\int\limits_a^bp(s,t)\varphi(t)\,dt \end{equation*} can be approximated by a finite dimensional kernel. The formula $(I-P)^+=(I-P^2)^+(I+P)$ and the persistency of the operator $(I-P^2)^+$ with respect to perturbations of a special type are proved. For any $\lambda\neq 0$ we find approximations of the function $\varphi$ which minimizes functional $\|(I-\lambda K)\varphi-f\|_2$ and has the least norm in $L_2[a,b]$ among all functions minimizing the above mentioned functional. Simultaneously we find approximations of the kernel and orthocomplement to the image of the operator $I-\lambda K$ if $\lambda\neq 0$ is a characteristic number. The corresponding approximation errors are obtained.
@article{BASM_2005_2_a5,
     author = {Alexander Kouleshoff},
     title = {An approximate solution of the {Fredholm} type equation of the second kind for any $\lambda\ne 0$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {77--93},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/}
}
TY  - JOUR
AU  - Alexander Kouleshoff
TI  - An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 77
EP  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/
LA  - en
ID  - BASM_2005_2_a5
ER  - 
%0 Journal Article
%A Alexander Kouleshoff
%T An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 77-93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/
%G en
%F BASM_2005_2_a5
Alexander Kouleshoff. An approximate solution of the Fredholm type equation of the second kind for any $\lambda\ne 0$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 77-93. http://geodesic.mathdoc.fr/item/BASM_2005_2_a5/