Lie algebras of the operators and three-dimensional polynomial differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 51-64
Voir la notice de l'article provenant de la source Math-Net.Ru
The defining equations are built for the representation of continuous groups in the space of variables and coefficients of multi-dimensional polynomial differential systems of the first order. Lie theorem on integrating factor is obtained for three-dimensional polynomial differential systems and the invariant $GL(3,\mathbb{R})$-integrals are constructed for three-dimensional affine differential system.
@article{BASM_2005_2_a2,
author = {Natalia Gherstega and Mihail Popa},
title = {Lie algebras of the operators and three-dimensional polynomial differential systems},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {51--64},
publisher = {mathdoc},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2005_2_a2/}
}
TY - JOUR AU - Natalia Gherstega AU - Mihail Popa TI - Lie algebras of the operators and three-dimensional polynomial differential systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 51 EP - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2005_2_a2/ LA - en ID - BASM_2005_2_a2 ER -
%0 Journal Article %A Natalia Gherstega %A Mihail Popa %T Lie algebras of the operators and three-dimensional polynomial differential systems %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2005 %P 51-64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2005_2_a2/ %G en %F BASM_2005_2_a2
Natalia Gherstega; Mihail Popa. Lie algebras of the operators and three-dimensional polynomial differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 51-64. http://geodesic.mathdoc.fr/item/BASM_2005_2_a2/