Optimal multicommodity flows in dynamic networks and algorithms for their finding
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 19-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study two basic problems related to dynamic flows: maximum multicommodity flow and the minimum cost multicommodity flow problems. We consider these problems on dynamic networks with time-varying capacities of edges. For minimum cost multicommodity flow problem we assume that cost functions, defined on edges, are nonlinear and depending on time and flow, and the demand function also depends on time. We propose algorithms for solving these dynamic problems, which are based on their reducing to static ones on a time-expanded network.
@article{BASM_2005_1_a2,
     author = {M. Fonoberova and D. Lozovanu},
     title = {Optimal multicommodity flows in dynamic networks and algorithms for their finding},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--34},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_1_a2/}
}
TY  - JOUR
AU  - M. Fonoberova
AU  - D. Lozovanu
TI  - Optimal multicommodity flows in dynamic networks and algorithms for their finding
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 19
EP  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_1_a2/
LA  - en
ID  - BASM_2005_1_a2
ER  - 
%0 Journal Article
%A M. Fonoberova
%A D. Lozovanu
%T Optimal multicommodity flows in dynamic networks and algorithms for their finding
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 19-34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_1_a2/
%G en
%F BASM_2005_1_a2
M. Fonoberova; D. Lozovanu. Optimal multicommodity flows in dynamic networks and algorithms for their finding. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 19-34. http://geodesic.mathdoc.fr/item/BASM_2005_1_a2/