Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 71-90

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work for the system $\dot{x}=y(1+Dx+Px^2)$, $\dot{y}=-x+Ax^2+3Bxy+Cy^2+Kx^3+3Lx^2y+Mxy^2+Ny^3$ 25 cases are given when the point $O(0,0)$ is a center. We also consider a system of the form $\dot{x}=yP_0(x)$, $\dot{y}=-x+P_2(x)y^2+P_3(x)y^3$, for which 35 cases of a center are shown. We prove the existence of systems of the form $\dot{x}=y(1+Dx+Px^2)$, $\dot{y}=-x+\lambda y +Ax^2+Cy^2+Kx^3+3Lx^2y+Mxy^2+Ny^3$ with eight limit cycles in the neighborhood of the origin of coordinates.
@article{BASM_2004_3_a7,
     author = {Yu. L. Bondar and A. P. Sadovskii},
     title = {Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {71--90},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_3_a7/}
}
TY  - JOUR
AU  - Yu. L. Bondar
AU  - A. P. Sadovskii
TI  - Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 71
EP  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_3_a7/
LA  - en
ID  - BASM_2004_3_a7
ER  - 
%0 Journal Article
%A Yu. L. Bondar
%A A. P. Sadovskii
%T Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 71-90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_3_a7/
%G en
%F BASM_2004_3_a7
Yu. L. Bondar; A. P. Sadovskii. Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 71-90. http://geodesic.mathdoc.fr/item/BASM_2004_3_a7/