On check character systems over groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 17-24

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we study check character systems (with one control symbol) over groups (over abelian groups) and the check formula $a_1\cdot\delta a_2\cdot\delta^2 a_3\cdots\delta^n a_{n+1}=e$, where $e$ is the identity of a group, $\delta$ is an automorphism (a permutation) of a group. For a group we consider strongly regular automorphisms (anti-automorphisms), their connection with good automorphisms and establish necessary and sufficient conditions in order that a system to be able to detect all single errors, transpositions, jump transpositions, twin errors and jump twin errors simultaneously.
@article{BASM_2004_3_a2,
     author = {G. Beliavscaia and A. Diordiev},
     title = {On check character systems over groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--24},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_3_a2/}
}
TY  - JOUR
AU  - G. Beliavscaia
AU  - A. Diordiev
TI  - On check character systems over groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 17
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_3_a2/
LA  - en
ID  - BASM_2004_3_a2
ER  - 
%0 Journal Article
%A G. Beliavscaia
%A A. Diordiev
%T On check character systems over groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 17-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_3_a2/
%G en
%F BASM_2004_3_a2
G. Beliavscaia; A. Diordiev. On check character systems over groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 17-24. http://geodesic.mathdoc.fr/item/BASM_2004_3_a2/