The optimal flow in dynamic networks with nonlinear cost functions on edges
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the dynamic version of the nonlinear minimum-cost flow problem on networks. We consider the problem on dynamic networks with nonlinear cost functions on edges that depend on time and flow. Moreover, we assume that the demand function and capacities of edges also depend on time. To solve the problem we propose an algorithm, which is based on reducing the dynamic problem to the classical minimum-cost problem on a time-expanded network. We also study some generalization of the proposed problem.
@article{BASM_2004_3_a1,
     author = {M. Fonoberova and D. Lozovanu},
     title = {The optimal flow in dynamic networks with nonlinear cost functions on edges},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {10--16},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_3_a1/}
}
TY  - JOUR
AU  - M. Fonoberova
AU  - D. Lozovanu
TI  - The optimal flow in dynamic networks with nonlinear cost functions on edges
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 10
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_3_a1/
LA  - en
ID  - BASM_2004_3_a1
ER  - 
%0 Journal Article
%A M. Fonoberova
%A D. Lozovanu
%T The optimal flow in dynamic networks with nonlinear cost functions on edges
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 10-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_3_a1/
%G en
%F BASM_2004_3_a1
M. Fonoberova; D. Lozovanu. The optimal flow in dynamic networks with nonlinear cost functions on edges. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 10-16. http://geodesic.mathdoc.fr/item/BASM_2004_3_a1/

[1] Ford L., Fulkerson D., “Constructing maximal dynamic flows from static flows”, Operation Res., 6 (1958), 419–433 | DOI | MR

[2] Lozovanu D., Stratila D., “The minimum-cost flow problem on dynamic networks and algorithm for its solving”, Bul. Acad. Ştiinţe Repub. Mold., Matematica, 2001, no. 3(37), 38–56 | MR | Zbl

[3] Lozovanu D., Stratila D., “Optimal flow in dynamic networks with nonlinear cost functions on edges”, Analysis and optimization of differential systems, eds. V. Barbu, I. Lesiencko, Kluwer Academic Publishers, 2003, 247–258, ISBN 1-4020-7439-5 | MR | Zbl

[4] Fleisher L., Skutella M., “The quickest multicommodity flow problem”, Integer programming and combinatorial optimization, Springer, Berlin, 2002, 36–53 | MR

[5] Klinz B., Woeginger C., “Minimum cost dynamic flows: the series parallel case”, Integer programming and combinatorial optimization (Copenhagen, 1995), Springer, Berlin, 1995, 329–343 | MR