On $I$-radicals
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 89-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper $I$-radicals are studied. Rings are characterized with the help of $I$-radicals. For example, each $I$-radical over a left perfect ring splits if and only if this ring is a direct sum of finitely many left perfect rings, the Jacobson radicals of which are maximal ideals of them.
@article{BASM_2004_2_a8,
     author = {O. Horbachuk and Yu. Maturin},
     title = {On $I$-radicals},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {89--94},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_2_a8/}
}
TY  - JOUR
AU  - O. Horbachuk
AU  - Yu. Maturin
TI  - On $I$-radicals
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 89
EP  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_2_a8/
LA  - en
ID  - BASM_2004_2_a8
ER  - 
%0 Journal Article
%A O. Horbachuk
%A Yu. Maturin
%T On $I$-radicals
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 89-94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_2_a8/
%G en
%F BASM_2004_2_a8
O. Horbachuk; Yu. Maturin. On $I$-radicals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 89-94. http://geodesic.mathdoc.fr/item/BASM_2004_2_a8/