Kojalovich Method and Studying Abel's Equation with the one known solution
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 62-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing a general solution for the abel's equation of the special kind with a known partial solution is considered.
@article{BASM_2004_2_a6,
     author = {A. V. Chichurin},
     title = {Kojalovich {Method} and {Studying} {Abel's} {Equation}  with the one known solution},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {62--66},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_2_a6/}
}
TY  - JOUR
AU  - A. V. Chichurin
TI  - Kojalovich Method and Studying Abel's Equation  with the one known solution
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 62
EP  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_2_a6/
LA  - en
ID  - BASM_2004_2_a6
ER  - 
%0 Journal Article
%A A. V. Chichurin
%T Kojalovich Method and Studying Abel's Equation  with the one known solution
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 62-66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_2_a6/
%G en
%F BASM_2004_2_a6
A. V. Chichurin. Kojalovich Method and Studying Abel's Equation  with the one known solution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 62-66. http://geodesic.mathdoc.fr/item/BASM_2004_2_a6/

[1] Zaitcev V. F., Polyanin A. D., Handbook of nonlinear Differential Equations. Applications to Mechanik, Exact solutions, Nauka, Moskow, 1993 (in Russian)

[2] Zaitcev V. F., Polyanin A. D., Handbook of Ordinary Differential Equations, Fizmathlit, Moskow, 2001 (in Russian)

[3] Lukashevich N. A., Chichurin A. V., Differential Equations of the First Order, BSU, Minsk, 1999 (in Russian)

[4] Kojalovich B. M., Investigations of the differential equation $ydy-ydx=Rdx$, Publ. Science Academy, Peterburg, 1894 (in Russian)

[5] Prokopenya A. N., Chichurin A. V., “Classes of the integrating functions for Abel's equation”, Proc. ot the Intern. Conf. DE'2000, Publ. S. Lavrova, Brest, 2001, 91–101 (in Russian)