Kojalovich Method and Studying Abel's Equation with the one known solution
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 62-66
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of constructing a general solution for the abel's equation of the special kind with a known partial solution is considered.
@article{BASM_2004_2_a6,
author = {A. V. Chichurin},
title = {Kojalovich {Method} and {Studying} {Abel's} {Equation} with the one known solution},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {62--66},
year = {2004},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2004_2_a6/}
}
A. V. Chichurin. Kojalovich Method and Studying Abel's Equation with the one known solution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 62-66. http://geodesic.mathdoc.fr/item/BASM_2004_2_a6/
[1] Zaitcev V. F., Polyanin A. D., Handbook of nonlinear Differential Equations. Applications to Mechanik, Exact solutions, Nauka, Moskow, 1993 (in Russian)
[2] Zaitcev V. F., Polyanin A. D., Handbook of Ordinary Differential Equations, Fizmathlit, Moskow, 2001 (in Russian)
[3] Lukashevich N. A., Chichurin A. V., Differential Equations of the First Order, BSU, Minsk, 1999 (in Russian)
[4] Kojalovich B. M., Investigations of the differential equation $ydy-ydx=Rdx$, Publ. Science Academy, Peterburg, 1894 (in Russian)
[5] Prokopenya A. N., Chichurin A. V., “Classes of the integrating functions for Abel's equation”, Proc. ot the Intern. Conf. DE'2000, Publ. S. Lavrova, Brest, 2001, 91–101 (in Russian)