The commutative Moufang loops with minimum conditions for subloops II
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 33-48
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the following conditions are equivalent for an infinite nonassociative commutative Moufang loop $Q$: 1) $Q$ satisfies the minimum condition for subloops; 2) if the loop $Q$ contains a centrally solvable subloop of class $s$, then it satisfies the minimum condition for centrally solvable subloops of class $s$; 3) if the loop $Q$ contains a centrally nilpotent subloop of class $n$, then it satisfies the minimum condition for centrally nilpotent subloops of class $n$; 4) $Q$ satisfies the minimum condition for noninvariant associative subloops. The structure of the commutative Moufang loops, whose infinite nonassociative subloops are normal is examined.
@article{BASM_2004_2_a3,
author = {N. I. Sandu},
title = {The commutative {Moufang} loops with minimum conditions for {subloops~II}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {33--48},
year = {2004},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2004_2_a3/}
}
N. I. Sandu. The commutative Moufang loops with minimum conditions for subloops II. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 33-48. http://geodesic.mathdoc.fr/item/BASM_2004_2_a3/
[1] Sandu N. I., “Commutative Moufang loops with minimum condition for subloops, I”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2003, no. 3(43), 25–40 | MR
[2] Zaitzev D. I., “Steadily solvable and steadily nilpotent groups”, DAN SSSR, 176:3 (1967), 509–511 (In Russian) | MR
[3] Bruck R. H., A survey of binary systems, Springer Verlag, Berlin–Heidelberg, 1958 | MR | Zbl
[4] Norton D. A., “Hamiltonian loops”, Proc. Amer. Math. Soc., 3 (1952), 56–65 | DOI | MR | Zbl