The commutative Moufang loops with minimum conditions for subloops~II
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the following conditions are equivalent for an infinite nonassociative commutative Moufang loop $Q$: 1) $Q$ satisfies the minimum condition for subloops; 2) if the loop $Q$ contains a centrally solvable subloop of class $s$, then it satisfies the minimum condition for centrally solvable subloops of class $s$; 3) if the loop $Q$ contains a centrally nilpotent subloop of class $n$, then it satisfies the minimum condition for centrally nilpotent subloops of class $n$; 4) $Q$ satisfies the minimum condition for noninvariant associative subloops. The structure of the commutative Moufang loops, whose infinite nonassociative subloops are normal is examined.
@article{BASM_2004_2_a3,
     author = {N. I. Sandu},
     title = {The commutative {Moufang} loops with minimum conditions for {subloops~II}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {33--48},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_2_a3/}
}
TY  - JOUR
AU  - N. I. Sandu
TI  - The commutative Moufang loops with minimum conditions for subloops~II
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 33
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_2_a3/
LA  - en
ID  - BASM_2004_2_a3
ER  - 
%0 Journal Article
%A N. I. Sandu
%T The commutative Moufang loops with minimum conditions for subloops~II
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 33-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_2_a3/
%G en
%F BASM_2004_2_a3
N. I. Sandu. The commutative Moufang loops with minimum conditions for subloops~II. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 33-48. http://geodesic.mathdoc.fr/item/BASM_2004_2_a3/

[1] Sandu N. I., “Commutative Moufang loops with minimum condition for subloops, I”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2003, no. 3(43), 25–40 | MR

[2] Zaitzev D. I., “Steadily solvable and steadily nilpotent groups”, DAN SSSR, 176:3 (1967), 509–511 (In Russian) | MR

[3] Bruck R. H., A survey of binary systems, Springer Verlag, Berlin–Heidelberg, 1958 | MR | Zbl

[4] Norton D. A., “Hamiltonian loops”, Proc. Amer. Math. Soc., 3 (1952), 56–65 | DOI | MR | Zbl