Cyclic planar random evolution with four directions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 27-32

Voir la notice de l'article provenant de la source Math-Net.Ru

A four-direction cyclic random motion with constant finite speed $v$ in the plane $R^2$ driven by a homogeneous Poisson process of rate $\lambda>0$ is studied. A fourth-order hyperbolic equation with constant coefficients governing the transition law of the motion is obtained. A general solution of the Fourier transform of this equation is given. A special non-linear automodel substitution is found reducing the governing partial differential equation to the generalized fourth-order ordinary Bessel differential equation, and the fundamental system of its solutions is explicitly given.
@article{BASM_2004_2_a2,
     author = {Alexander D. Kolesnik},
     title = {Cyclic planar random evolution with four directions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {27--32},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_2_a2/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Cyclic planar random evolution with four directions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 27
EP  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_2_a2/
LA  - en
ID  - BASM_2004_2_a2
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Cyclic planar random evolution with four directions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 27-32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_2_a2/
%G en
%F BASM_2004_2_a2
Alexander D. Kolesnik. Cyclic planar random evolution with four directions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 27-32. http://geodesic.mathdoc.fr/item/BASM_2004_2_a2/