Radicals around K\"othe's problem
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 76-84

Voir la notice de l'article provenant de la source Math-Net.Ru

Radicals $\gamma$ will be studied for which the condition "$A[x] \in\gamma$ for all nil rings $A$" is equivalent to the positive solution of Köthe's Problem ($A[x]$ is Jacobson radical for all nil rings $A$, in Krempa's formulation). The closer $\gamma$ is to the Jacobson radical, the better approximation of the positive solution is obtained. Seeking, however, for a negative solution, possibly large radicals $\gamma$ are of interest. In this note such large radicals will be studied.
@article{BASM_2004_1_a8,
     author = {S. Tumurbat and R. Wiegandt},
     title = {Radicals around {K\"othe's} problem},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--84},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a8/}
}
TY  - JOUR
AU  - S. Tumurbat
AU  - R. Wiegandt
TI  - Radicals around K\"othe's problem
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 76
EP  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_1_a8/
LA  - en
ID  - BASM_2004_1_a8
ER  - 
%0 Journal Article
%A S. Tumurbat
%A R. Wiegandt
%T Radicals around K\"othe's problem
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 76-84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_1_a8/
%G en
%F BASM_2004_1_a8
S. Tumurbat; R. Wiegandt. Radicals around K\"othe's problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 76-84. http://geodesic.mathdoc.fr/item/BASM_2004_1_a8/