Exponent matrices and their quivers
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider exponent matrices and investigate their connections with tiled orders and quivers, finite partially ordered sets and doubly stochastic matrices.
@article{BASM_2004_1_a6,
     author = {V. V. Kirichenko and A. V. Zelensky and V. N. Zhuravlev},
     title = {Exponent matrices and their quivers},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--66},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/}
}
TY  - JOUR
AU  - V. V. Kirichenko
AU  - A. V. Zelensky
AU  - V. N. Zhuravlev
TI  - Exponent matrices and their quivers
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 57
EP  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/
LA  - en
ID  - BASM_2004_1_a6
ER  - 
%0 Journal Article
%A V. V. Kirichenko
%A A. V. Zelensky
%A V. N. Zhuravlev
%T Exponent matrices and their quivers
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 57-66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/
%G en
%F BASM_2004_1_a6
V. V. Kirichenko; A. V. Zelensky; V. N. Zhuravlev. Exponent matrices and their quivers. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 57-66. http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/

[1] Birkhoff G., Lattice theory, Amer. Math. Soc., Providence, 1973 | MR | Zbl

[2] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets, I”, Algebra and Discrete Math., 1 (2002), 32–63 | MR | Zbl

[3] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets, II”, Algebra and Discrete Math., 2:2 (2003), 47–86 | MR | Zbl

[4] Gubareni N. M., Kirichenko V. V., Rings and Modules, Czestochowa, 2001 | Zbl

[5] Keedwell A. D., Denes J., Latin squares and their applications, Academic Press, N.Y., 1974 | MR

[6] Kirichenko V. V., Mogileva V. V., Pirus E. M., Khibina M. A., “Semi-perfect rings and picewise domains”, Algebraic Researches, Institute of Mathematics NAS Ukraine, 1995, 33–65 (In Russian)

[7] Pierce R. S., Associative Algebras, Springer-Verlag, New York, 1982 | MR | Zbl

[8] Pflugfelder H. O., Quasigroups and loops: Introduction, Heldermann, Berlin, 1990 | MR

[9] Roggenkamp K. W., Kirichenko V. V., Khibina M. A., Zhuravlev V. N., “Gorenstein tiled orders”, Comm. in Algebra, 29(9) (2001), 4231–4247 | DOI | MR | Zbl

[10] Simson D., Linear Representations of Partially Ordered Sets and Vector Categories, Algebra, Logic Appl., 4, Gordon and Breach, 1992 | MR | Zbl