Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_1_a6, author = {V. V. Kirichenko and A. V. Zelensky and V. N. Zhuravlev}, title = {Exponent matrices and their quivers}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {57--66}, publisher = {mathdoc}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/} }
TY - JOUR AU - V. V. Kirichenko AU - A. V. Zelensky AU - V. N. Zhuravlev TI - Exponent matrices and their quivers JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 57 EP - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/ LA - en ID - BASM_2004_1_a6 ER -
V. V. Kirichenko; A. V. Zelensky; V. N. Zhuravlev. Exponent matrices and their quivers. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 57-66. http://geodesic.mathdoc.fr/item/BASM_2004_1_a6/
[1] Birkhoff G., Lattice theory, Amer. Math. Soc., Providence, 1973 | MR | Zbl
[2] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets, I”, Algebra and Discrete Math., 1 (2002), 32–63 | MR | Zbl
[3] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets, II”, Algebra and Discrete Math., 2:2 (2003), 47–86 | MR | Zbl
[4] Gubareni N. M., Kirichenko V. V., Rings and Modules, Czestochowa, 2001 | Zbl
[5] Keedwell A. D., Denes J., Latin squares and their applications, Academic Press, N.Y., 1974 | MR
[6] Kirichenko V. V., Mogileva V. V., Pirus E. M., Khibina M. A., “Semi-perfect rings and picewise domains”, Algebraic Researches, Institute of Mathematics NAS Ukraine, 1995, 33–65 (In Russian)
[7] Pierce R. S., Associative Algebras, Springer-Verlag, New York, 1982 | MR | Zbl
[8] Pflugfelder H. O., Quasigroups and loops: Introduction, Heldermann, Berlin, 1990 | MR
[9] Roggenkamp K. W., Kirichenko V. V., Khibina M. A., Zhuravlev V. N., “Gorenstein tiled orders”, Comm. in Algebra, 29(9) (2001), 4231–4247 | DOI | MR | Zbl
[10] Simson D., Linear Representations of Partially Ordered Sets and Vector Categories, Algebra, Logic Appl., 4, Gordon and Breach, 1992 | MR | Zbl