Rings over which some preradicals are torsions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 40-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative ring with identity and $z$ be a pretorsion such that its filter consists of the essential left ideals of the ring $R$. In this paper, it is proved that every preradical $r\ge z$ of $R-Mod$ is a torsion if and only if the ring $R$ is a finite direct sum of pseudoinjective simple rings.
@article{BASM_2004_1_a4,
     author = {I. D. Bunu},
     title = {Rings over which some preradicals are torsions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {40--45},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a4/}
}
TY  - JOUR
AU  - I. D. Bunu
TI  - Rings over which some preradicals are torsions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 40
EP  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_1_a4/
LA  - en
ID  - BASM_2004_1_a4
ER  - 
%0 Journal Article
%A I. D. Bunu
%T Rings over which some preradicals are torsions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 40-45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_1_a4/
%G en
%F BASM_2004_1_a4
I. D. Bunu. Rings over which some preradicals are torsions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 40-45. http://geodesic.mathdoc.fr/item/BASM_2004_1_a4/

[1] Kashu A. I., Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[2] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, 1982 | MR | Zbl

[3] Kashu A. I., “When the radical associated to a module is a torsion?”, Mat. Zametki, 16 (1974), 41–48 (In Russian) | MR | Zbl

[4] Handelman D. E., “Strongly semiprime rings”, Pacif. J. Math., 60(1) (1975), 115–122 | MR | Zbl

[5] Kutami M., Oshiro K., “Strongly semiprime rings and nonsingular quasi-injective modules”, Osaka J. Math., 17 (1980), 41–50 | MR | Zbl

[6] Bunu I. D., “On the strongly semiprime rings”, Bulet. A.Ş. R.M., Matematica, 1997, no. 1(23), 78–83 | MR

[7] Van den Berg J. E., “Primeness Described in the Language of Torsion Preradicals”, Semigroup Forum, 64 (2002), 425–442 | MR | Zbl