Generating properties of biparabolic invertible polynomial maps in three variables
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invertible polynomial map of the standard 1-parabolic form $x_i \to f_i(x_1,\dots,x_{n-1})$, $i$, $x_n\to\alpha x_n+h_n(x_1,\ldots,x_{n-1})$ is a natural generalization of a triangular map. To generalize the previous results about triangular and bitriangular maps, it is shown that the group of tame polynomial transformations $TGA_3$ is generated by an affine group $AGL_3$ and any nonlinear biparabolic map of the form $U_0\cdot q_1\cdot U_1\cdot q_2\cdot U_2,$ where $U_i$ are linear maps and both $q_i$ have the standard 1-parabolic form.
@article{BASM_2004_1_a3,
     author = {Yu. Bodnarchuk},
     title = {Generating properties of biparabolic  invertible  polynomial maps in three variables},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {34--39},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a3/}
}
TY  - JOUR
AU  - Yu. Bodnarchuk
TI  - Generating properties of biparabolic  invertible  polynomial maps in three variables
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 34
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_1_a3/
LA  - en
ID  - BASM_2004_1_a3
ER  - 
%0 Journal Article
%A Yu. Bodnarchuk
%T Generating properties of biparabolic  invertible  polynomial maps in three variables
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 34-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_1_a3/
%G en
%F BASM_2004_1_a3
Yu. Bodnarchuk. Generating properties of biparabolic  invertible  polynomial maps in three variables. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 34-39. http://geodesic.mathdoc.fr/item/BASM_2004_1_a3/

[1] Shafarevich I., “On some Infinite Dimensional Groups, II”, Izv. AN USSR, Ser. math., 45 (1981), 214–226 | MR | Zbl

[2] Kac V., “Simple irreducible graded Lie algebrais of finite growth”, Izv. AN USSR, Ser. math., 32 (1969), 1323–1367 | MR

[3] Bodnarchuk Yu., “Some extreme properties of the affine group as an automorphism group of the affine space”, Contribution to General Algebra, 13 (2001), 15–29 | MR

[4] Shestakov I., Umirbaev U., The tame and the wild automorphisms of polynomial rings in three variables, Preprint São Paulo University, 1, 2002, 1–35 | MR

[5] Mortimer B., “Permutation Groups containing Affine Groups of the same degree”, J. of London Math. Soc., 15 (1977), 445–455 | DOI | MR | Zbl

[6] Bodnarchuk Yu., “Generating properties of triangular and bitriangular birational automorphisms of an affine space”, Dopovidi NAN Ukraine, 11 (2002), 7–22 | MR

[7] Bodnarchuk Yu., “On affine-split tame invertible polynomial maps in three variables”, Buletinul A.Ş. a R. M., Matematika, 2002, no. 2(39), 37–43 | MR | Zbl