On overnilpotent radicals of topological rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
For every overnilpotent radical defined on the class of all topological rings every $\sigma$-bounded locally bounded topological ring is a subring of some radical topological ring.
@article{BASM_2004_1_a0,
author = {V. I. Arnautov},
title = {On overnilpotent radicals of topological rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {3--14},
year = {2004},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a0/}
}
V. I. Arnautov. On overnilpotent radicals of topological rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 3-14. http://geodesic.mathdoc.fr/item/BASM_2004_1_a0/
[1] Arnautov B. I., “The theory of radicals of topological rings”, Mathematica Japonica, 47:3 (1998), 439–544 | MR | Zbl
[2] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996 | MR | Zbl
[3] Vodinchar M. I., “On the minimal overnilpotent radical in topological rings”, Mat. issled., 3:4 (1968/1969), 29–50 (In Russian) | MR
[4] Trinh Dăng Khôi, “Strictly hereditary radicals in the class of all topological rings”, Stud. Sci. Math. Hung., 20:1–4 (1985), 37–41 (In Russian) | MR | Zbl