Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_3_a8, author = {V. Driuma}, title = {On {Riemann} extension of the {Schwarzschild} metric}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {92--103}, publisher = {mathdoc}, number = {3}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2003_3_a8/} }
V. Driuma. On Riemann extension of the Schwarzschild metric. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 92-103. http://geodesic.mathdoc.fr/item/BASM_2003_3_a8/
[1] Paterson E. M., Walker A. G., “Riemann extensions”, Quart. J. Math. Oxford, 3 (1952), 19–28 | DOI | MR
[2] “The Riemann Extension in theory of differential equations their applications”, Matematicheskaya fizika, analiz, geometriya, 10:3 (2003), 1–19 | MR
[3] Dryuma V., “The Invariants, the Riemann and Einstein-Weyl geometry in theory of ODE's and all that”, NATO Proceedings, NEEDS'14 (Cadiz, Spain, 2003)
[4] Dryuma V., “Applications of Riemannian and Einstein-Weyl Geometry in the theory of second order ordinary differential equations”, Theoretical and Mathematical Physics, 128:1 (2001), 845–855 | DOI | MR | Zbl
[5] Bogorodskii A. F., The Einstein field equations and their applications in astronomy, Kiev, 1962 (in Russian)