Approximate solution of the Dirichlet problem in a~circle
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 83-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approaches to the solution of Dirichlet problem in a unit radius circle are constructed in the manner of rational functions. There were found the estimates of approaches' inaccuracies. Assuming that the boundary condition is to be a measurable bounded function with the finite number of discontinuities. Constructions use the solution of trigonometric problem of moments.
@article{BASM_2003_3_a7,
     author = {Alexander Kouleshoff},
     title = {Approximate solution of the {Dirichlet} problem in a~circle},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {83--91},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_3_a7/}
}
TY  - JOUR
AU  - Alexander Kouleshoff
TI  - Approximate solution of the Dirichlet problem in a~circle
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 83
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_3_a7/
LA  - en
ID  - BASM_2003_3_a7
ER  - 
%0 Journal Article
%A Alexander Kouleshoff
%T Approximate solution of the Dirichlet problem in a~circle
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 83-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_3_a7/
%G en
%F BASM_2003_3_a7
Alexander Kouleshoff. Approximate solution of the Dirichlet problem in a~circle. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 83-91. http://geodesic.mathdoc.fr/item/BASM_2003_3_a7/

[1] Szegö G., Orthogonal polynomials, New York, 1939

[2] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonal, Nauka, Moscow, 1988, 112–144. | MR | Zbl

[3] Geronimus Ya. L., Polynomials orthogonal on the circle and on the segment, Phizmatgiz, Moscow, 1958