On some Hypergroups and their Hyperlattice Structures
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 15-24

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a hypergroup and $\mathcal{L}(G)$ be the set of all subhypergroups of $G$. In this survey article, we introduce some hypergroups $G$ from combinatorial structures and study the structure of the set $\mathcal{L}(G)$. We prove that in some cases $\mathcal{L}(G)$ has a lattice or hyperlattice structure.
@article{BASM_2003_3_a1,
     author = {G. A. Moghani and A. R. Ashrafi},
     title = {On some {Hypergroups} and their {Hyperlattice} {Structures}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {15--24},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_3_a1/}
}
TY  - JOUR
AU  - G. A. Moghani
AU  - A. R. Ashrafi
TI  - On some Hypergroups and their Hyperlattice Structures
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 15
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_3_a1/
LA  - en
ID  - BASM_2003_3_a1
ER  - 
%0 Journal Article
%A G. A. Moghani
%A A. R. Ashrafi
%T On some Hypergroups and their Hyperlattice Structures
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 15-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_3_a1/
%G en
%F BASM_2003_3_a1
G. A. Moghani; A. R. Ashrafi. On some Hypergroups and their Hyperlattice Structures. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 15-24. http://geodesic.mathdoc.fr/item/BASM_2003_3_a1/