Linear singular perturbations of hyperbolic-parabolic type
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 95-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of solutions of the problem $\varepsilon u''(t)+u'(t)+Au(t)=f(t)$, $u(0)=u_0$, $u'(0)=u_1$ in the Hilbert space $H$ as $\varepsilon\to 0$, where $A$ is a linear, symmetric, strong positive operator.
@article{BASM_2003_2_a8,
     author = {A. Perjan},
     title = {Linear singular perturbations of hyperbolic-parabolic type},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--112},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_2_a8/}
}
TY  - JOUR
AU  - A. Perjan
TI  - Linear singular perturbations of hyperbolic-parabolic type
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 95
EP  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_2_a8/
LA  - en
ID  - BASM_2003_2_a8
ER  - 
%0 Journal Article
%A A. Perjan
%T Linear singular perturbations of hyperbolic-parabolic type
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 95-112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_2_a8/
%G en
%F BASM_2003_2_a8
A. Perjan. Linear singular perturbations of hyperbolic-parabolic type. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 95-112. http://geodesic.mathdoc.fr/item/BASM_2003_2_a8/

[1] V. Barbu, Semigroups of nonlinear contractions in Banach spaces, Ed. Acad. Rom., Bucharest, 1974 (in Romanian) | MR | Zbl

[2] Gh. Moroşanu, Nonlinear Evolution Equations and Applications, Ed. Acad. Rom., Bucharest, 1988 | Zbl

[3] M. M. Lavrenitiev, K. G. Reznitskaia, B. G. Yahno, The inverse one-dimentional problems from mathematecal physics, Nauka, Novosibirsk, 1982 (in Russian)