On rational bases of $GL(2,\mathbb{R})$-comitants of planar polynomial systems of differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 69-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear transformations of autonomous planar polynomial systems of differential equations which reduce these systems to the canonical forms with coefficients expressed as rational functions of $GL(2,\mathbb{R})$-comitants and $GL(2,\mathbb{R})$-invariants are established. Such canonical forms for general quadratic and cubic systems are constructed in concrete forms. Using constructed canonical forms for polynomial systems some rational bases of $GL(2,\mathbb{R})$-comitants depending on the coordinates of one vector are obtained.
@article{BASM_2003_2_a6,
     author = {Iurie Calin},
     title = {On rational bases of $GL(2,\mathbb{R})$-comitants of planar polynomial systems of differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {69--86},
     year = {2003},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_2_a6/}
}
TY  - JOUR
AU  - Iurie Calin
TI  - On rational bases of $GL(2,\mathbb{R})$-comitants of planar polynomial systems of differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 69
EP  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_2_a6/
LA  - en
ID  - BASM_2003_2_a6
ER  - 
%0 Journal Article
%A Iurie Calin
%T On rational bases of $GL(2,\mathbb{R})$-comitants of planar polynomial systems of differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 69-86
%N 2
%U http://geodesic.mathdoc.fr/item/BASM_2003_2_a6/
%G en
%F BASM_2003_2_a6
Iurie Calin. On rational bases of $GL(2,\mathbb{R})$-comitants of planar polynomial systems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 69-86. http://geodesic.mathdoc.fr/item/BASM_2003_2_a6/

[1] N. I. Vulpe, Polinomialnye bazisy komitantov differentsialnykh sistem i ikh prilozheniya v kachestvennoi teorii, Shtiintsa, Kishinev, 1986 | MR | Zbl

[2] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl

[3] Boularas Driss, Iu. Calin, L. Timochouk, N. Vulpe, $T$-comitants of quadratic systems: A study via the translation invariants, Report 96-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996, p. 1–36.

[4] G. B. Gurevich, Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl

[5] J. H. Grace, A. Young, The Algebra of Invariants, Cambridge University Press, 1903 | Zbl

[6] N. I. Vulpe, K. S. Sibirskii, “Affinnaya klassifikatsiya kvadratichnoi sistemy”, Differentsialnye uravneniya, 10:12 (1974), 2111–2124 | MR | Zbl

[7] Bularas Driss, “Usloviya nalichiya osoboi tochki tipa tsentra obschei kvadratichnoi differentsialnoi sistemy”, Dinamicheskie sistemy i uravneniya matematicheskoi fiziki, Shtiintsa, Kishinev, 1988, 32–49 | MR

[8] V. I. Danilyuk, K. S. Sibirskii, “Sizigii mezhdu tsentroaffinnymi invariantami kvadratichnoi differentsialnoi sistemy”, Differentsialnye uravneniya, 17:2 (1981), 210–219 | MR | Zbl

[9] P. M. Makar, M. N. Popa, “Tipicheskoe predstavlenie polinomialnykh differentsialnykh sistem s pomoschyu komitantov pervogo poryadka”, Izvestiya AN RM, Matematika, 1996, no. 3(22), 52–60 | MR | Zbl

[10] Iu. Calin, “About rational bases of comitants of cubic differential system”, First Conference of the Mathematical Sosiety of the Republic of Moldova, Abstracts (Chisinau, August 16–18, 2001), 13–15 | Zbl

[11] Iu. Calin, “Syzygies among comitants of the homogeneous cubic differential system”, First Conference of the Mathematical Sosiety of the Republic of Moldova, Abstracts (Chisinau, August 16–18, 2001), 15–16