About some equations of the third order with six poles
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 59-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigating ordinary differential equations of the third order on the subject of belonging to P-type (solutions of such equations have no movable critical singular points), Chazy has built an equation (Chazy equation) with 32 coefficients. If these coefficients satisfy the special (S)-system, then Chazy equation belongs to P-type. In this paper we find three solution of the (S)-system and build three classes of Chazy equation of the P-type.
@article{BASM_2003_2_a5,
     author = {A. V. Chichurin},
     title = {About some equations of the third order with six poles},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {59--68},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_2_a5/}
}
TY  - JOUR
AU  - A. V. Chichurin
TI  - About some equations of the third order with six poles
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 59
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_2_a5/
LA  - en
ID  - BASM_2003_2_a5
ER  - 
%0 Journal Article
%A A. V. Chichurin
%T About some equations of the third order with six poles
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 59-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_2_a5/
%G en
%F BASM_2003_2_a5
A. V. Chichurin. About some equations of the third order with six poles. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 59-68. http://geodesic.mathdoc.fr/item/BASM_2003_2_a5/