Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 13-27

Voir la notice de l'article provenant de la source Math-Net.Ru

For planar polynomial homogeneous real vector field $X=(P,Q)$ with $\deg(P)=\deg(Q)=n$ some algebraic equations of degree $n+1$ with $GL(2,\mathbb{R})$-invariant coefficients are constructed. A recurrent method for the construction of these coefficients is given. In the generic case each real or imaginary solution $s_i (i=1,2,\ldots,n+1)$ of the main equation is a value of the derivative of the slope function, calculated for the corresponding invariant line. Other constructed equations have, respectively, the solutions $1/s_i$, $1-s_i$, $s_i/(s_i-1)$, $(s_i-1)/s_i$, $1/(1-s_i)$. The equation with the solutions $ (n+1)s_i-1$ is called residual equation. If $X$ has real invariant lines, the values and signs of solutions of constructed equations determine the behavior of the orbits in a neighbourhood at infinity. If $X$ has not real invariant lines, it is shown that the necessary and sufficient conditions for the center existence can be expressed through the coefficients of residual equation.
@article{BASM_2003_2_a1,
     author = {Valeriu Baltag},
     title = {Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {13--27},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_2_a1/}
}
TY  - JOUR
AU  - Valeriu Baltag
TI  - Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 13
EP  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_2_a1/
LA  - en
ID  - BASM_2003_2_a1
ER  - 
%0 Journal Article
%A Valeriu Baltag
%T Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 13-27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_2_a1/
%G en
%F BASM_2003_2_a1
Valeriu Baltag. Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 13-27. http://geodesic.mathdoc.fr/item/BASM_2003_2_a1/