Solution of the center problem for cubic systems with a~bundle of three invariant straight lines
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 91-101

Voir la notice de l'article provenant de la source Math-Net.Ru

For cubic differential system with three invariant straight lines which pass through the same point it is proved that a singular point with purely imaginary eigenvalues (weak focus) is a center if and only if the focal values $g_{2j+1}$, $j=\overline{1,5}$, vanish.
@article{BASM_2003_1_a9,
     author = {Alexandru \c{S}ub\u{a}},
     title = {Solution of the center problem  for cubic systems with a~bundle of three invariant  straight lines},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {91--101},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a9/}
}
TY  - JOUR
AU  - Alexandru Şubă
TI  - Solution of the center problem  for cubic systems with a~bundle of three invariant  straight lines
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 91
EP  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_1_a9/
LA  - en
ID  - BASM_2003_1_a9
ER  - 
%0 Journal Article
%A Alexandru Şubă
%T Solution of the center problem  for cubic systems with a~bundle of three invariant  straight lines
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 91-101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_1_a9/
%G en
%F BASM_2003_1_a9
Alexandru Şubă. Solution of the center problem  for cubic systems with a~bundle of three invariant  straight lines. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 91-101. http://geodesic.mathdoc.fr/item/BASM_2003_1_a9/