CMC--surfaces, $\varphi$--geodesics and the Carath\'eodory conjecture
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 83-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A short proof of the Caratheodory conjecture about index of an isolated umbilic on the convex 2–dimensional sphere is suggested.
@article{BASM_2003_1_a8,
     author = {I. V. Nikolaev},
     title = {CMC--surfaces, $\varphi$--geodesics and the {Carath\'eodory} conjecture},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {83--90},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a8/}
}
TY  - JOUR
AU  - I. V. Nikolaev
TI  - CMC--surfaces, $\varphi$--geodesics and the Carath\'eodory conjecture
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 83
EP  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_1_a8/
LA  - en
ID  - BASM_2003_1_a8
ER  - 
%0 Journal Article
%A I. V. Nikolaev
%T CMC--surfaces, $\varphi$--geodesics and the Carath\'eodory conjecture
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 83-90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_1_a8/
%G en
%F BASM_2003_1_a8
I. V. Nikolaev. CMC--surfaces, $\varphi$--geodesics and the Carath\'eodory conjecture. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 83-90. http://geodesic.mathdoc.fr/item/BASM_2003_1_a8/

[1] Alekseevskij D. V., Vinogradov A. M., Lychagin V. V., “Basic Ideas and Concepts of Differential Geometry”, Geometry, I, Encycl. of math. sci., 28, Springer Verlag, 1991 | MR

[2] Bol G., “Uber Nabelpunkte auf einer Eiflache”, Math. Z., 49 (1943–1944), 389–410 | DOI | MR

[3] Cartan E., “Sur les couples de surfaces applicables avec conservations des courbures principales”, Bull. Sci. Math., 66 (1942), 55–85 | MR | Zbl

[4] Chern S. S., “Deformations of surfaces preserving principal curvatures”, Differential Geometry and Complex Analysis, H. E. Rauch memorial volume, Springer-Verlag, 1985, 155–163 | MR

[5] Hamburger H., “Beweis einer Caratheodoryschen Vermutung, I”, Ann. of Math., 41 (1940), 63–86 ; “Beweis einer Caratheodoryschen Vermutung. II; III”, Acta Mathematica, 73 (1941), 175–332 | DOI | MR | Zbl | DOI | MR

[6] Kapouleas N., “Compact constant mean curvature surfaces in Euclidean three-space”, J. Diff. Geom., 33 (1991), 683–715 | MR | Zbl

[7] Klotz T., “On G. Bol's proof of Carathéodory's Conjecture”, Comm. Pure and Appl. Math., 12 (1959), 277–311 | DOI | MR | Zbl

[8] Lawson H. B., Tribuzy R. A., “On the mean curvature function for compact surfaces”, J. Diff. Geom., 16 (1981), 179–183 | MR | Zbl

[9] Nikolaev I., Foliations on Surfaces, Ergebnisse der Mathematik, 41, Springer-Verlag, Berlin–Heidelberg, 2001 | MR

[10] Strebel K., Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, Springer-Verlag, 1984 | MR | Zbl

[11] Umehara M., “A characterization of compact surfaces with constant mean curvature”, Proc. Amer. Math. Soc., 108 (1990), 483–489 | DOI | MR | Zbl

[12] Wente H. C., “Counterexample to a conjecture of H. Hopf”, Pacific J. Math., 121 (1986), 193–243 | MR | Zbl

[13] Wolf J. A., “Surfaces of constant mean curvature”, Proc. Amer. Math. Soc., 17 (1966), 1103–1111 | DOI | MR | Zbl