@article{BASM_2003_1_a7,
author = {Henryk \.Zo{\l}\k{a}dek},
title = {Note on multiple zeta{\textendash}values},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {78--82},
year = {2003},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a7/}
}
Henryk Żołądek. Note on multiple zeta–values. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 78-82. http://geodesic.mathdoc.fr/item/BASM_2003_1_a7/
[1] G. Bateman, A. Erdelyi, Higher Transcendental Functions, v. 1, McGraw-Hill Book C., New York, 1953 | Zbl
[2] R. Apéry, “Irrationabilité de $\zeta(2)$ et $\zeta(3)$”, Asterisque, 61, 1979, 11–13 | MR | Zbl
[3] A. B. Goncharov, “Multiple $\zeta$-values, Galois groups and geometry of modular varietes”, European Congress of Mathematics, I (Barcelona, 2000), Progress in Math., 201, Birkhäuser, Basel, 2001, 361–392 | MR | Zbl
[4] M. Kontsevich, D. Zagier, “Periods”, Mathematics Unlimited - 2001 and beyond, Springer, Berlin, 2001, 771–808 | MR | Zbl
[5] A. M. Legendre, Elements de Geométrie, Note 4, Paris, 1855
[6] F. Lindemann, “Über die Zahl $\pi$”, Math. Ann., 20:2 (1882), 213–225 | DOI | MR
[7] de Gruyter Studies in Math., 12, Walter de Gruyter Co., Berlin, 1989 | MR | Zbl
[8] D. Zagier, “Values of zeta function and their applications”, First European Congress of Mathematicians, 2, Progress in Math., 120, Birkhäuser, Basel, 1994, 497–512 | MR | Zbl