A Lie algebra of a differential generalized FitzHugh–Nagumo system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 18-30
Cet article a éte moissonné depuis la source Math-Net.Ru
Some Lie algebra admissible for a generalized FitzHugh-Nagumo (F-N) system is constructed. Then this algebra is used to classify the dimension of the $Aff_3(2,R)$-orbits and to derive the four canonical systems corresponding to orbits of dimension equal to 1 or 2. The phase dynamics generated by these systems is studied and is found to differ qualitatively from the dynamics generated by the classical F-N system the $Aff_3(2,R)$-orbits of which are of dimension 3. A dynamic bifurcation diagram is also presented.
@article{BASM_2003_1_a2,
author = {Mihail Popa and Adelina Georgescu and Carmen Roc\c{s}oreanu},
title = {A~Lie algebra of a~differential generalized {FitzHugh{\textendash}Nagumo} system},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {18--30},
year = {2003},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/}
}
TY - JOUR AU - Mihail Popa AU - Adelina Georgescu AU - Carmen Rocşoreanu TI - A Lie algebra of a differential generalized FitzHugh–Nagumo system JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2003 SP - 18 EP - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/ LA - en ID - BASM_2003_1_a2 ER -
%0 Journal Article %A Mihail Popa %A Adelina Georgescu %A Carmen Rocşoreanu %T A Lie algebra of a differential generalized FitzHugh–Nagumo system %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2003 %P 18-30 %N 1 %U http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/ %G en %F BASM_2003_1_a2
Mihail Popa; Adelina Georgescu; Carmen Rocşoreanu. A Lie algebra of a differential generalized FitzHugh–Nagumo system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 18-30. http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/
[1] Rocşoreanu C., Georgescu A., Giurgiţeanu N., FitzHugh-Nagumo model, Kluwer, Dordrecht, 2000
[2] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl
[3] Academic Press, 1982 | MR | Zbl
[4] Murray J. D., Mathematical biology, Springer, Berlin, 1993 | MR
[5] Kuznetsov Yu., Elements of applied bifurcation theory, Springer, New York, 1995 | MR