A~Lie algebra of a~differential generalized FitzHugh--Nagumo system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 18-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Some Lie algebra admissible for a generalized FitzHugh-Nagumo (F-N) system is constructed. Then this algebra is used to classify the dimension of the $Aff_3(2,R)$-orbits and to derive the four canonical systems corresponding to orbits of dimension equal to 1 or 2. The phase dynamics generated by these systems is studied and is found to differ qualitatively from the dynamics generated by the classical F-N system the $Aff_3(2,R)$-orbits of which are of dimension 3. A dynamic bifurcation diagram is also presented.
@article{BASM_2003_1_a2,
     author = {Mihail Popa and Adelina Georgescu and Carmen Roc\c{s}oreanu},
     title = {A~Lie algebra of a~differential generalized  {FitzHugh--Nagumo} system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {18--30},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/}
}
TY  - JOUR
AU  - Mihail Popa
AU  - Adelina Georgescu
AU  - Carmen Rocşoreanu
TI  - A~Lie algebra of a~differential generalized  FitzHugh--Nagumo system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 18
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/
LA  - en
ID  - BASM_2003_1_a2
ER  - 
%0 Journal Article
%A Mihail Popa
%A Adelina Georgescu
%A Carmen Rocşoreanu
%T A~Lie algebra of a~differential generalized  FitzHugh--Nagumo system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 18-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/
%G en
%F BASM_2003_1_a2
Mihail Popa; Adelina Georgescu; Carmen Rocşoreanu. A~Lie algebra of a~differential generalized  FitzHugh--Nagumo system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 18-30. http://geodesic.mathdoc.fr/item/BASM_2003_1_a2/