Classification of quadratic systems with a~symmetry center and simple infinite singular points
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 102-119

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the family of planar quadratic differential systems with a center of symmetry and two invariant straight lines according to the topology of their phase portraits. The case of the existence of simple infinite singular points is only considered. For each of the obtained distinct topological classes we give necessary and sufficient conditions in terms of algebraic invariants and comitants. The program was implemented for computer calculations.
@article{BASM_2003_1_a10,
     author = {Mircea Lupan and Nicolae Vulpe},
     title = {Classification of quadratic systems with a~symmetry center and simple infinite singular points},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {102--119},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a10/}
}
TY  - JOUR
AU  - Mircea Lupan
AU  - Nicolae Vulpe
TI  - Classification of quadratic systems with a~symmetry center and simple infinite singular points
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 102
EP  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_1_a10/
LA  - en
ID  - BASM_2003_1_a10
ER  - 
%0 Journal Article
%A Mircea Lupan
%A Nicolae Vulpe
%T Classification of quadratic systems with a~symmetry center and simple infinite singular points
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 102-119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_1_a10/
%G en
%F BASM_2003_1_a10
Mircea Lupan; Nicolae Vulpe. Classification of quadratic systems with a~symmetry center and simple infinite singular points. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 102-119. http://geodesic.mathdoc.fr/item/BASM_2003_1_a10/