On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 111-127 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.
Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.
Classification : 53B30, 53C25, 53C35, 53C50
Keywords: Einstein manifolds; quasi Einstein manifolds; generalized quasi Einstein manifolds; quasi-conformal curvature tensor; space-matter tensor
@article{AUPO_2016_55_2_a9,
     author = {Mallick, Sahanous and De, Uday Chand},
     title = {On a {Class} of {Generalized} {quasi-Einstein} {Manifolds} with {Applications} to {Relativity}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {111--127},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1366.53033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a9/}
}
TY  - JOUR
AU  - Mallick, Sahanous
AU  - De, Uday Chand
TI  - On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 111
EP  - 127
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a9/
LA  - en
ID  - AUPO_2016_55_2_a9
ER  - 
%0 Journal Article
%A Mallick, Sahanous
%A De, Uday Chand
%T On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 111-127
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a9/
%G en
%F AUPO_2016_55_2_a9
Mallick, Sahanous; De, Uday Chand. On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 111-127. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a9/

[1] Ahsan, Z.: A symmetry property of the spacetime of general relativity in terms of the space-matter tensor. Brazilian J. Phys. 26 (1996), 572–576.

[2] Ahsan, Z., Siddiqui, S. A.: On the divergence of the space-matter tensor in general relativity. Adv. Studies Theor. Phys. 4 (2010), 543–556. | MR | Zbl

[3] Ahsan, Z., Siddiqui, S. A.: Concircular curvature tensor and fluid spacetimes. Int J. Theor. Phys. 48, 11 (2009), 3202–3212. | DOI | MR | Zbl

[4] Amur, K., Maralabhavi, Y. B.: On quasi-conformal flat spaces. Tensor (N.S.) 31, 2 (1977), 194–198. | MR

[5] Bejan, C. L.: Characterizations of quasi-Einstein manifolds. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 53 (2007), 67–72. | MR | Zbl

[6] Bejan, C. L., Binh, T. Q.: Generalized Einstein manifolds. In: Differential Geometry and its Applications, Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007, World Sci. Publ., Hackensack, NJ, 2008, 57–64. | MR | Zbl

[7] Besse, A. L.: Einstein Manifolds. Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1987. | MR | Zbl

[8] Chaki, M. C., Maity, R. K.: On quasi Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297–306. | MR | Zbl

[9] Chaki, M. C.: On generalized quasi-Einstein manifolds. Publ. Math. Debrecen 58 (2001), 683–691. | MR | Zbl

[10] Chaki, M. C., Ray, S.: Spacetimes with covariant constant energy-momentum tensor. Int. J. Theor. Phys. 35 (1996), 1027–1032. | DOI | MR

[11] De, U. C., Guha, N., Kamilya, D.: On generalized Ricci-recurrent manifolds. Tensor (N.S.) 56 (1995), 312–317. | MR | Zbl

[12] De, U. C., Ghosh, G. C.: On quasi-Einstein manifolds. Period. Math. Hungar. 48 (2004), 223–231. | DOI | MR | Zbl

[13] De, U. C., Ghosh, G. C.: On conformally flat special quasi-Einstein manifolds. Publ. Math. Debrecen 66 (2005), 129–136. | MR | Zbl

[14] De, U. C., Ghosh, G. C.: On quasi Einstein and special quasi Einstein manifolds. In: Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178–191. | MR

[15] De, U. C., Gazi, A. K.: On nearly quasi Einstein manifolds. Novi Sad J. Math. 38 (2008), 115–121. | MR | Zbl

[16] De, U. C., Sarkar, A.: On the quasi-conformal curvature tensor of a $(k,\mu )$-contact metric manifolds. Math. Rep. 14, 2 (2012), 115–129. | MR

[17] De, U. C., Matsuyama, Y.: Quasi-conformally flat manifolds satisfying certain conditions on the Ricci tensor. SUT J. Math. 42, 2 (2006), 295–303. | MR

[18] De, U. C., Jun, J. B., Gazi, A. K.: Sasakian manifolds with quasi-conformal curvature tensor. Bull. Korean Math. Soc. 45, 2 (2008), 313–319. | DOI | MR | Zbl

[19] De, U. C., Mallick, S.: Spacetimes admitting $W_{2}$-curvature tensor. Int. J. Geom. Methods Mod. Phys. 11 (2014), 1–8. | MR | Zbl

[20] Hosseinzadeh, A., Taleshian, A.: On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold. Commun. Korean Math. Soc. 27 (2012), 317–326. | DOI | MR | Zbl

[21] Debnath, P., Konar, A.: On quasi-Einstein manifolds and quasi-Einstein spacetimes. Differ. Geom. Dyn. Syst. 12 (2010), 73–82. | MR

[22] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicate 7 (1998), 259–280. | MR

[23] Guha, S.: On a perfect fluid space-time admitting quasi conformal curvature tensor. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 843–849. | MR | Zbl

[24] Guha, S. R.: On quasi-Einstein and generalized quasi-Einstein manifolds. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 821–842. | MR | Zbl

[25] Güler, S., Demirbağ, S. A.: A study of generalized quasi-Einstein spacetimes with applications in general relativity. Int. J. Theor. Phys. 55, 1 (2016), 548–562. | DOI | Zbl

[26] Mantica, C. A., Suh, Y. J.: Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds. Balkan J. Geom. Appl. 16, 1 (2011), 66–77. | MR | Zbl

[27] Mantica, C. A., Suh, Y. J.: Pseudo-Z symmetric spacetimes. J. Math. Phys. 55, 4 (2014), 1–12. | DOI | MR

[28] Nagaraja, H. G.: On N(k)-mixed quasi-Einstein manifolds. Eur. J. Pure Appl. Math. 3 (2010), 16–25. | MR

[29] Novello, M., Reboucas, M. J.: The stability of a rotating universe. Astrophysical Journal 225 (1978), 719–724. | DOI

[30] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York, 1983. | MR

[31] Özgür, C.: N(k)-quasi Einstein manifolds satisfying certain conditions. Chaos, Solutions and Fractals 38 (2008), 1373–1377. | DOI | MR | Zbl

[32] Özgür, C.: On some classes of super quasi-Einstein manifolds. Chaos, Solitons and Fractals 40 (2009), 1156–1161. | DOI | MR | Zbl

[33] Özgür, C.: On a class of generalized quasi-Einstein manifolds. Applied Sciences, Balkan Society of Geometers 8 (2006), 138–141. | MR | Zbl

[34] Özgür, C., Sular, S.: On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl. 13 (2008), 74–79. | MR

[35] Özgür, C., Sular, S.: On some properties of generalized quasi-Einstein manifolds. Indian J. Math. 50 (2008), 297–302. | MR | Zbl

[36] Özgür, C., Sular, S.: Characterizations of generalized quasi-Einstein manifolds. An. St. Univ. Ovidius Constanta 20 (2012), 407–416. | MR | Zbl

[37] Patterson, E. M.: Some theorems on Ricci-recurrent spaces. Journal London Math. Soc. 27 (1952), 287–295. | DOI | MR | Zbl

[38] Petrov, A. Z.: Einstein Spaces. Pergamon Press, Oxford, 1949. | MR

[39] Ray, D.: Gödel-like cosmological solutions. Math. Phys. 21, 12 (1980), 2797–2798. | DOI | MR

[40] Sachs, R. K., Hu, W.: General Relativity for Mathematician. Springer Verlag, New York, 1977. | MR

[41] Schouten, J. A.: Ricci-Calculus. Springer, Berlin, 1954. | Zbl

[42] Taleshian, A., Hosseinzadeh, A. A.: Investigation of some conditions on N(k)-quasi Einstein manifolds. Bull. Malays. Math. Sci. Soc. 34 (2011), 455–464. | MR | Zbl

[43] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 2 (1968), 161–184. | DOI | MR | Zbl

[44] Zengin, F. Ö.: m-Projectively flat spacetimes. Math. Reports 4, 4 (2012), 363–370. | MR | Zbl