$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
Classification : 53B30, 53C15, 53C25
Keywords: $\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
@article{AUPO_2016_55_2_a8,
     author = {Hui, Shyamal Kumar and Chakraborty, Debabrata},
     title = {$\eta ${-Ricci} {Solitons} on $\eta ${-Einstein} $(LCS)_n${-Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {101--109},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1365.53022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/}
}
TY  - JOUR
AU  - Hui, Shyamal Kumar
AU  - Chakraborty, Debabrata
TI  - $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 101
EP  - 109
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/
LA  - en
ID  - AUPO_2016_55_2_a8
ER  - 
%0 Journal Article
%A Hui, Shyamal Kumar
%A Chakraborty, Debabrata
%T $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 101-109
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/
%G en
%F AUPO_2016_55_2_a8
Hui, Shyamal Kumar; Chakraborty, Debabrata. $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/

[1] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: Certain results on Ricci solitons in $\alpha $-Sasakian manifolds. Geometry 2013, ID 573925 (2013), 1–4. | MR | Zbl

[2] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: A geometry on Ricci solitons in $(LCS)_{n}$-manifolds. Diff. Geom.-Dynamical Systems 16 (2014), 50–62. | MR | Zbl

[3] Atceken, M.: On geometry of submanifolds of $(LCS)_n$-manifolds. International Journal of Mathematics and Mathematical Sciences 2012, ID 304647 (2014), 1–11. | MR

[4] Atceken, M., Hui, S. K.: Slant and pseudo-slant submanifolds of LCS-manifolds. Czechoslovak Math. J. 63 (2013), 177–190. | DOI | MR

[5] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian-Sasakian manifolds. Acta Math. Acad. Paeda. Nyire. 28 (2012), 59–68. | MR

[6] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi constant curvature. Publ. Math. Debrecen 78 (2011), 235–243. | DOI | MR | Zbl

[7] Blaga, A. M.: $\eta $-Ricci solitons on para-kenmotsu manifolds. Balkan J. Geom. Appl. 20 (2015), 1–13. | MR | Zbl

[8] Blaga, A. M., Crasmareanu, M.: Torse forming $\eta $-Ricci solitons in almost para-contact $\eta $-Einstein geometry. Filomat, (to appear).

[9] Chandra, S., Hui, S. K., Shaikh, A. A.: Second order parallel tensors and Ricci solitons on $(LCS)_n$-manifolds. Commun. Korean Math. Soc. 30 (2015), 123–130. | DOI | MR | Zbl

[10] Chen, B. Y., Deshmukh, S.: Geometry of compact shrinking Ricci solitons. Balkan J. Geom. Appl. 19 (2014), 13–21. | MR | Zbl

[11] Chen, B. Y., Deshmukh, S.: Ricci solitons and concurrent vector fields. arXiv:1407.2790 [math.DG] 2014 (2014), 1–12. | MR

[12] Cho, J. T., Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 61 (2009), 205–212. | DOI | MR | Zbl

[13] Deshmukh, S., Al-Sodais, H., Alodan, H.: A note on Ricci solitons. Balkan J. Geom. Appl. 16 (2011), 48–55. | MR | Zbl

[14] Hamilton, R. S.: Three Manifold with positive Ricci curvature. J. Differential Geom. 17, 2 (1982), 255–306. | DOI | MR

[15] Hamilton, R. S.: The Ricci flow on surfaces. Contemporary Mathematics 71 (1988), 237–261. | DOI | MR | Zbl

[16] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces. Arch. Math. 5 (2008), 385–390. | MR

[17] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces. AIP Conf. Proc. 1191 (2009), 98–103.

[18] Hui, S. K.: On $\phi $-pseudo symmetries of $(LCS)_n$-manifolds. Kyungpook Math. J. 53 (2013), 285–294. | DOI | MR

[19] Hui, S. K., Atceken, M.: Contact warped product semi-slant submanifolds of $(LCS)_n$-manifolds. Acta Univ. Sapientiae Mathematica 3, 2 (2011), 212–224. | MR | Zbl

[20] Hui, S. K., Chakraborty, D.: Some types of Ricci solitons on $(LCS)_n$-manifolds. J. Math. Sciences: Advances and Applications 37 (2016), 1–17.

[21] Hui, S. K., Lemence, R. S., Chakraborty, D.: Ricci solitons on three dimensional generalized Sasakian-space-forms. Tensor, N. S. 76 (2015).

[22] Ingalahalli, G., Bagewadi, C. S.: Ricci solitons in $\alpha $-Sasakian manifolds. ISRN Geometry 2012, ID 421384 (2012), 1–13. | DOI | MR | Zbl

[23] Matsumoto, K.: On Lorentzian almost paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156. | MR

[24] Mihai, I., Rosca, R.: On Lorentzian para-Sasakian manifolds. In: Classical Anal., World Sci. Publ., Singapore, 1992, 155–169. | MR

[25] Mikeš, J., Rachůnek, L.: Torse forming vector fields in T-semisymmetric Riemannian spaces. In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 2000, 219–229. | MR

[26] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. | MR | Zbl

[27] Nagaraja, H. G., Premlatta, C. R.: Ricci solitons in Kenmotsu manifolds. J. Math. Analysis 3 (2012), 18–24. | MR

[28] Narain, D., Yadav, S.: On weak concircular symmetries of $(LCS)_{2n+1}$-manifolds. Global J. Sci. Frontier Research 12 (2012), 85–94. | MR

[29] O’Neill, B.: Semi Riemannian geometry with applications to relativity. Academic Press, New York, 1983. | MR | Zbl

[30] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 [Math.DG] 2002 (2002), 1–39. | Zbl

[31] Perelman, G.: Ricci flow with surgery on three manifolds. arXiv:math/0303109 [Math.DG] 2003 (2013), 1–22.

[32] Prakasha, D. G.: On Ricci $\eta $-recurrent $(LCS)_n$-manifolds. Acta Univ. Apulensis 24 (2010), 109–118. | MR | Zbl

[33] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305–314. | MR | Zbl

[34] Shaikh, A. A.: Some results on $(LCS)_n$-manifolds. J. Korean Math. Soc. 46 (2009), 449–461. | DOI | MR | Zbl

[35] Shaikh, A. A., Ahmad, H.: Some transformations on $(LCS)_n$-manifolds. Tsukuba J. Math. 38 (2014), 1–24. | DOI | MR | Zbl

[36] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129–132. | DOI | MR | Zbl

[37] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes II. American J. Appl. Sci. 3, 4 (2006), 1790–1794. | DOI | MR

[38] Shaikh, A. A., Basu, T., Eyasmin, S.: On locally $\phi $-symmetric $(LCS)_n$-manifolds. Int. J. Pure Appl. Math. 41, 8 (2007), 1161–1170. | MR | Zbl

[39] Shaikh, A. A., Basu, T., Eyasmin, S.: On the existence of $\phi $-recurrent $(LCS)_n$-manifolds. Extracta Mathematicae 23, 1 (2008), 71–83. | MR

[40] Shaikh, A. A., Binh, T. Q.: On weakly symmetric $(LCS)_n$-manifolds. J. Adv. Math. Studies 2 (2009), 75–90. | MR | Zbl

[41] Shaikh, A. A., Hui, S. K.: On generalized $\phi $-recurrent $(LCS)_n$-manifolds. AIP Conf. Proc. 1309 (2010), 419–429.

[42] Shaikh, A. A., Matsuyama, Y., Hui, S. K.: On invariant submanifold of $(LCS)_n$-manifolds. J. Egyptian Math. Soc. 24 (2016), 263–269. | DOI | MR

[43] Sharma, R.: Second order parallel tensor in real and complex space forms. International J. Math. and Math. Sci. 12 (1989), 787–790. | MR | Zbl

[44] Sharma, R.: Certain results on k-contact and $(k,\mu )$-contact manifolds. J. of Geom. 89 (2008), 138–147. | DOI | MR | Zbl

[45] Tripathi, M. M.: Ricci solitons in contact metric manifolds. arxiv:0801.4221 [Math.DG] 2008 (2008), 1–9.

[46] Yano, K.: Concircular geometry I, concircular transformations. Proc. Imp. Acad. Tokyo 16 (1940), 195–200. | DOI | MR