$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
Classification :
53B30, 53C15, 53C25
Keywords: $\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
Keywords: $\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
@article{AUPO_2016_55_2_a8,
author = {Hui, Shyamal Kumar and Chakraborty, Debabrata},
title = {$\eta ${-Ricci} {Solitons} on $\eta ${-Einstein} $(LCS)_n${-Manifolds}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {101--109},
year = {2016},
volume = {55},
number = {2},
zbl = {1365.53022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/}
}
TY - JOUR AU - Hui, Shyamal Kumar AU - Chakraborty, Debabrata TI - $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 101 EP - 109 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/ LA - en ID - AUPO_2016_55_2_a8 ER -
%0 Journal Article %A Hui, Shyamal Kumar %A Chakraborty, Debabrata %T $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 101-109 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/ %G en %F AUPO_2016_55_2_a8
Hui, Shyamal Kumar; Chakraborty, Debabrata. $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a8/