On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 87-99 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^{\prime }$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$-nullity distribution admitting a semisymmetric metric connection.
We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^{\prime }$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$-nullity distribution admitting a semisymmetric metric connection.
Classification : 53C25, 53C35
Keywords: Semisymmetric metric connection; almost Kenmotsu manifold; Einstein manifold; sectional curvature; Ricci tensor; Weyl conformal curvature tensor
@article{AUPO_2016_55_2_a7,
     author = {Ghosh, Gopal and De, Uday Chand},
     title = {On a {Semi-symmetric} {Metric} {Connection} in an {Almost} {Kenmotsu} {Manifold} with {Nullity} {Distributions}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {87--99},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1372.53048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/}
}
TY  - JOUR
AU  - Ghosh, Gopal
AU  - De, Uday Chand
TI  - On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 87
EP  - 99
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/
LA  - en
ID  - AUPO_2016_55_2_a7
ER  - 
%0 Journal Article
%A Ghosh, Gopal
%A De, Uday Chand
%T On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 87-99
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/
%G en
%F AUPO_2016_55_2_a7
Ghosh, Gopal; De, Uday Chand. On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 87-99. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/

[1] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nulitty condition. Israel. J. Math. 91 (1995), 189–214. | DOI | MR

[2] Blair, D. E.: Contact Manifolds in Reimannian Geometry. Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976.

[3] Blair, D. E.: Reimannian Geometry of Contact and Sympletic Manifolds. Progress in Mathematics 203, Birkhäuser, Basel, 2010. | MR

[4] Binh, T. Q.: On Semisymmetric Connections. Periodica Mathematica Hungarica 21 (1990), 101–107. | DOI | MR

[5] Barman, A.: Concirculer curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold. Thai Jornal Of Mathematics 13 (2015), 245–257. | MR

[6] Barman, A.: On a special type of Remannian manifold admitting a type of semisymmetric metric connection. Novi Sad J. Math 42 (2012), 81–88. | MR

[7] Barman, A.: On Para-Sasakian manifolds admitting semisymmetric metric connection. Publication de L’Insitut Mathematique 109 (2014), 239–247. | DOI | MR

[8] De, U. C., Pathok, G.: On a Semi-symmetric Metric Connection in a Kenmotsu manifold. Bull. Cal. Math. Soc. 94 (2002), 319–324. | MR

[9] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom. 93 (2009), 46–61. | DOI | MR | Zbl

[10] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds with a condition of $\eta $-parallelsim. Differential Geom. Appl. 27 (2009), 671–679. | DOI | MR

[11] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetri. Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343–354. | MR

[12] Friedman, A., Schouten, J. A.: Über die Geometric der halbsymmetrischen Übertragung. Math., Zeitschr. 21 (1924), 211–223. | DOI | MR

[13] Gray, A.: Spaces of constancy of curvature operators. Proc. Amer. Math. Soc. 17 (1966), 897–902. | DOI | MR | Zbl

[14] Hayden, H. A.: Subspace of space with torsion. Proc. London Math. Soc. 34 (1932), 27–50. | DOI | MR

[15] Imai, T.: Notes on semi-symmetric metric conection. Tensor (N.S.) 24 (1972), 293–296. | MR

[16] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Mathematical Journal 24, 1 (1972), 93–103. | DOI | MR | Zbl

[17] Liang, Y.: On semi-symmetric recurrent-metric connection. Tensor (N.S.) 55 (1994), 107–112. | MR | Zbl

[18] Mishra, R. S.: Structures on Differentiable Manifold and Their Applications. Chandrama Prakasana, Allahabad, 1984.

[19] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on an almost Kenmotsu manifolds. J. Geom. 4 (2011), 168–183. | MR

[20] Pastore, A. M., Saltarelli, V.: Almost Kenmotsu manifolds with conformal Reeb foliation. Bull. Belg. Math. Soc. Simon Stevin 21 (2012), 343–354. | MR

[21] Pravanović, M., Pušić, N.: On manifolds admitting some semi-symmetric metric connection. Indian J. Math. 37 (1995), 37–67. | MR

[22] Pušić, N.: On geodesic lines of metric semi-symmetric connection on Riemannian and hyperbolic Kählerian spaces. Novi Sad J. Math. 29 (1999), 291–299. | MR

[23] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R=0$. I. The local version. J. Differential Geom. 17, 4 (1982), 531–582. | DOI | MR | Zbl

[24] Tanno, S.: Some differential equation on Reimannian manifolds. J. Math. Soc. Japan 30 (1978), 509–531. | DOI | MR

[25] Velimirović, L. S., Minčić, S. M., Stanković, M. S.: Infinitesimal deformations of curvature tensor at non-symmetric affine connection space. Mat. Vesnic 54 (2002), 219–226. | MR

[26] Velimirović, L. S., Minčić, S. M., Stanković, M. S.: Infinitesimal deformations and Lie derivative of non-symmetric affine connection space. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. | MR

[27] Wang, Y., Liu, X.: On $\phi $-recurrent almost kenmotsu manifolds. Kuwait J. Sci. 42 (2015), 65–77. | MR | Zbl

[28] Wang, Y., Liu, X.: Second order parrallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions. Filomat 28 (2014), 839–847. | DOI | MR

[29] Wang, Y., Liu, X.: Remannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math. 112 (2014), 37–46. | DOI | MR

[30] Yano, K.: On semisymmetric metric connection. Rev. Roumaine Math. Pures Appl. 15 (1970), 1570–1586. | MR

[31] Yano, K., Kon, M.: Structure on Manifolds. Series in Math. 3, World Scientific, Singapore, 1984. | MR

[32] Zhao, P., Song, H.: An invariant of the projective semisymmetric connection. Chinese Quaterly J. Math. 19 (1994), 48–52.