On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 87-99
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^{\prime }$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$-nullity distribution admitting a semisymmetric metric connection.
We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^{\prime }$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$-nullity distribution admitting a semisymmetric metric connection.
Classification :
53C25, 53C35
Keywords: Semisymmetric metric connection; almost Kenmotsu manifold; Einstein manifold; sectional curvature; Ricci tensor; Weyl conformal curvature tensor
Keywords: Semisymmetric metric connection; almost Kenmotsu manifold; Einstein manifold; sectional curvature; Ricci tensor; Weyl conformal curvature tensor
@article{AUPO_2016_55_2_a7,
author = {Ghosh, Gopal and De, Uday Chand},
title = {On a {Semi-symmetric} {Metric} {Connection} in an {Almost} {Kenmotsu} {Manifold} with {Nullity} {Distributions}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {87--99},
year = {2016},
volume = {55},
number = {2},
zbl = {1372.53048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/}
}
TY - JOUR AU - Ghosh, Gopal AU - De, Uday Chand TI - On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 87 EP - 99 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/ LA - en ID - AUPO_2016_55_2_a7 ER -
%0 Journal Article %A Ghosh, Gopal %A De, Uday Chand %T On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 87-99 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/ %G en %F AUPO_2016_55_2_a7
Ghosh, Gopal; De, Uday Chand. On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 87-99. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a7/