Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold.
In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold.
Classification :
53C25, 53C44, 53D10
Keywords: Conformal Ricci soliton; conformal curvature tensor; conharmonic curvature tensor; Lorentzian $\alpha $-Sasakian manifolds; projective curvature tensor
Keywords: Conformal Ricci soliton; conformal curvature tensor; conharmonic curvature tensor; Lorentzian $\alpha $-Sasakian manifolds; projective curvature tensor
@article{AUPO_2016_55_2_a5,
author = {Dutta, Tamalika and Basu, Nirabhra and BHATTACHARYYA, Arindam},
title = {Conformal {Ricci} {Soliton} in {Lorentzian} $\alpha ${-Sasakian} {Manifolds}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {57--70},
year = {2016},
volume = {55},
number = {2},
zbl = {1365.53046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/}
}
TY - JOUR AU - Dutta, Tamalika AU - Basu, Nirabhra AU - BHATTACHARYYA, Arindam TI - Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 57 EP - 70 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/ LA - en ID - AUPO_2016_55_2_a5 ER -
%0 Journal Article %A Dutta, Tamalika %A Basu, Nirabhra %A BHATTACHARYYA, Arindam %T Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 57-70 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/ %G en %F AUPO_2016_55_2_a5
Dutta, Tamalika; Basu, Nirabhra; BHATTACHARYYA, Arindam. Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/