Keywords: Conformal Ricci soliton; conformal curvature tensor; conharmonic curvature tensor; Lorentzian $\alpha $-Sasakian manifolds; projective curvature tensor
@article{AUPO_2016_55_2_a5,
author = {Dutta, Tamalika and Basu, Nirabhra and BHATTACHARYYA, Arindam},
title = {Conformal {Ricci} {Soliton} in {Lorentzian} $\alpha ${-Sasakian} {Manifolds}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {57--70},
year = {2016},
volume = {55},
number = {2},
zbl = {1365.53046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/}
}
TY - JOUR AU - Dutta, Tamalika AU - Basu, Nirabhra AU - BHATTACHARYYA, Arindam TI - Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 57 EP - 70 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/ LA - en ID - AUPO_2016_55_2_a5 ER -
%0 Journal Article %A Dutta, Tamalika %A Basu, Nirabhra %A BHATTACHARYYA, Arindam %T Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 57-70 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/ %G en %F AUPO_2016_55_2_a5
Dutta, Tamalika; Basu, Nirabhra; BHATTACHARYYA, Arindam. Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/
[1] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian $\alpha $-Sasakian manifolds. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28 (2012), 59–68. | MR | Zbl
[2] Bagewadi, C. S., :, Venkatesha: Some curvature tensors on a trans-Sasakian manifold. Turk. J. Math. 31 (2007), 111–121. | MR | Zbl
[3] Basu, N., Bhattacharyya, A.: Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern Geometries 4 (2015), 15–21. | MR
[4] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi-constant curvature. Publ. Math. Debrecen 78, 1 (2011), 235–243. | DOI | MR | Zbl
[5] Dutta, T., Basu, N., Bhattacharyya, A.: Some curvature identities on an almost conformal gradient shrinking Ricci soliton. Journal of Dynamical Systems and Geometric Theories 13, 2 (2015), 163–178. | DOI | MR
[6] Dutta, T., Basu, N., Bhattacharyya, A.: Almost conformal Ricci solitons on $3$-dimensional trans-Sasakian manifold. Hacettepe Journal of Mathematics and Statistics 45, 5 (2016), 1379–1392. | MR | Zbl
[7] Dutta, T., Bhattacharyya, A., Debnath, S.: Conformal Ricci soliton in almost C($\lambda $) manifold. Internat. J. Math. Combin. 3 (2016), 17–26.
[8] Dwivedi, M. K., Kim, J.-S.: On conharmonic curvature tensor in K-contact and Sasakian manifolds. Bulletin of the Malaysian Mathematical Sciences Society 34, 1 (2011), 171–180. | MR | Zbl
[9] Fischer, A. E.: An introduction to conformal Ricci flow. class.Quantum Grav. 21 (2004), S171–S218. | DOI | MR | Zbl
[10] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces. Ann. Sci. Stetinenses 9 (1994), 31–40.
[11] Hamilton, R. S.: Three Manifold with positive Ricci curvature. J. Differential Geom. 17, 2 (1982), 255–306. | DOI | MR
[12] Hamilton, R. S.: The Ricci flow on surfaces. Contemporary Mathematics 71 (1988), 237–261. | DOI | MR | Zbl
[13] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces. In: Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. | MR | Zbl
[14] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces. Arch. Math. 5 (2008), 385–390. | MR
[15] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces. AIP Conf. Proc. 1191 (2009), 98–103.
[16] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2, 1 (2009), 125–133; In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Slovak University of Technology, Bratislava, 2009, 423–430.
[17] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces. Archives at VINITI, Odessk. Univ., Moscow, 1976.
[18] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacky Univ. Press, Olomouc, 2009. | MR | Zbl
[19] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. | MR | Zbl
[20] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sb. 32 (1989), 92–98. | MR | Zbl
[21] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces. Sov. Math., Dokl. 34 (1987), 428–431. | MR | Zbl
[22] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR
[23] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28 (1981), 622–624; Transl. from: Mat. Zametki 28 (1980), 313–317. | DOI | MR
[24] Mikeš, J.: Geodesic mappings of $m$-symmetric and generalized semisymmetric spaces. Russian Math. (Iz. VUZ) 36, 8 (1992), 38–42. | MR
[25] Mikeš, J.: Geodesic mappings on semisymmetric spaces. Russian Math. (Iz. VUZ) 38, 2 (1994), 35–41. | MR
[26] Mikeš, J.: Equidistant Kähler spaces. Math. Notes 38 (1985), 855–858. | DOI | MR | Zbl
[27] Sekigawa, K.: Almost Hermitian manifolds satisfying some curvature conditions. Kodai Math. J. 2 (1979), 384–405. | DOI | MR | Zbl
[28] Sharma, R.: Almost Ricci solitons and K-contact geometry. Monatsh. Math. 175 (2014), 621–628. | DOI | MR | Zbl
[29] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979. | Zbl
[30] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R = 0$, The local version. J. Diff. Geom. 17 (1982), 531–582. | DOI | MR
[31] Tripathi, M. M.: Ricci solitons in contact metric manifolds. arXiv:0801,4222v1 [mathDG] 2008 (2008), 1–6.
[32] Yadav, S., Suthar, D. L.: Certain derivation on Lorentzian $\alpha $-Sasakian manifold. Global Journal of Science Frontier Research Mathematics and Decision Sciences 12, 2 (2012), 1–6. | MR