Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold.
In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold.
Classification : 53C25, 53C44, 53D10
Keywords: Conformal Ricci soliton; conformal curvature tensor; conharmonic curvature tensor; Lorentzian $\alpha $-Sasakian manifolds; projective curvature tensor
@article{AUPO_2016_55_2_a5,
     author = {Dutta, Tamalika and Basu, Nirabhra and BHATTACHARYYA, Arindam},
     title = {Conformal {Ricci} {Soliton} in {Lorentzian} $\alpha ${-Sasakian} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {57--70},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1365.53046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/}
}
TY  - JOUR
AU  - Dutta, Tamalika
AU  - Basu, Nirabhra
AU  - BHATTACHARYYA, Arindam
TI  - Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 57
EP  - 70
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/
LA  - en
ID  - AUPO_2016_55_2_a5
ER  - 
%0 Journal Article
%A Dutta, Tamalika
%A Basu, Nirabhra
%A BHATTACHARYYA, Arindam
%T Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 57-70
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/
%G en
%F AUPO_2016_55_2_a5
Dutta, Tamalika; Basu, Nirabhra; BHATTACHARYYA, Arindam. Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/