Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold.
In this paper we have studied conformal curvature tensor, conharmonic curvature tensor, projective curvature tensor in Lorentzian $\alpha $-Sasakian manifolds admitting conformal Ricci soliton. We have found that a Weyl conformally semi symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also studied conharmonically Ricci symmetric Lorentzian $\alpha $-Sasakian manifold admitting conformal Ricci soliton. Similarly we have proved that a Lorentzian $\alpha $-Sasakian manifold $M$ with projective curvature tensor admitting conformal Ricci soliton is $\eta $-Einstein manifold. We have also established an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold.
Classification : 53C25, 53C44, 53D10
Keywords: Conformal Ricci soliton; conformal curvature tensor; conharmonic curvature tensor; Lorentzian $\alpha $-Sasakian manifolds; projective curvature tensor
@article{AUPO_2016_55_2_a5,
     author = {Dutta, Tamalika and Basu, Nirabhra and BHATTACHARYYA, Arindam},
     title = {Conformal {Ricci} {Soliton} in {Lorentzian} $\alpha ${-Sasakian} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {57--70},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1365.53046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/}
}
TY  - JOUR
AU  - Dutta, Tamalika
AU  - Basu, Nirabhra
AU  - BHATTACHARYYA, Arindam
TI  - Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 57
EP  - 70
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/
LA  - en
ID  - AUPO_2016_55_2_a5
ER  - 
%0 Journal Article
%A Dutta, Tamalika
%A Basu, Nirabhra
%A BHATTACHARYYA, Arindam
%T Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 57-70
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/
%G en
%F AUPO_2016_55_2_a5
Dutta, Tamalika; Basu, Nirabhra; BHATTACHARYYA, Arindam. Conformal Ricci Soliton in Lorentzian $\alpha $-Sasakian Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a5/

[1] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian $\alpha $-Sasakian manifolds. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28 (2012), 59–68. | MR | Zbl

[2] Bagewadi, C. S., :, Venkatesha: Some curvature tensors on a trans-Sasakian manifold. Turk. J. Math. 31 (2007), 111–121. | MR | Zbl

[3] Basu, N., Bhattacharyya, A.: Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern Geometries 4 (2015), 15–21. | MR

[4] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi-constant curvature. Publ. Math. Debrecen 78, 1 (2011), 235–243. | DOI | MR | Zbl

[5] Dutta, T., Basu, N., Bhattacharyya, A.: Some curvature identities on an almost conformal gradient shrinking Ricci soliton. Journal of Dynamical Systems and Geometric Theories 13, 2 (2015), 163–178. | DOI | MR

[6] Dutta, T., Basu, N., Bhattacharyya, A.: Almost conformal Ricci solitons on $3$-dimensional trans-Sasakian manifold. Hacettepe Journal of Mathematics and Statistics 45, 5 (2016), 1379–1392. | MR | Zbl

[7] Dutta, T., Bhattacharyya, A., Debnath, S.: Conformal Ricci soliton in almost C($\lambda $) manifold. Internat. J. Math. Combin. 3 (2016), 17–26.

[8] Dwivedi, M. K., Kim, J.-S.: On conharmonic curvature tensor in K-contact and Sasakian manifolds. Bulletin of the Malaysian Mathematical Sciences Society 34, 1 (2011), 171–180. | MR | Zbl

[9] Fischer, A. E.: An introduction to conformal Ricci flow. class.Quantum Grav. 21 (2004), S171–S218. | DOI | MR | Zbl

[10] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces. Ann. Sci. Stetinenses 9 (1994), 31–40.

[11] Hamilton, R. S.: Three Manifold with positive Ricci curvature. J. Differential Geom. 17, 2 (1982), 255–306. | DOI | MR

[12] Hamilton, R. S.: The Ricci flow on surfaces. Contemporary Mathematics 71 (1988), 237–261. | DOI | MR | Zbl

[13] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces. In: Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. | MR | Zbl

[14] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces. Arch. Math. 5 (2008), 385–390. | MR

[15] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces. AIP Conf. Proc. 1191 (2009), 98–103.

[16] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2, 1 (2009), 125–133; In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Slovak University of Technology, Bratislava, 2009, 423–430.

[17] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces. Archives at VINITI, Odessk. Univ., Moscow, 1976.

[18] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacky Univ. Press, Olomouc, 2009. | MR | Zbl

[19] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. | MR | Zbl

[20] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sb. 32 (1989), 92–98. | MR | Zbl

[21] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces. Sov. Math., Dokl. 34 (1987), 428–431. | MR | Zbl

[22] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[23] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28 (1981), 622–624; Transl. from: Mat. Zametki 28 (1980), 313–317. | DOI | MR

[24] Mikeš, J.: Geodesic mappings of $m$-symmetric and generalized semisymmetric spaces. Russian Math. (Iz. VUZ) 36, 8 (1992), 38–42. | MR

[25] Mikeš, J.: Geodesic mappings on semisymmetric spaces. Russian Math. (Iz. VUZ) 38, 2 (1994), 35–41. | MR

[26] Mikeš, J.: Equidistant Kähler spaces. Math. Notes 38 (1985), 855–858. | DOI | MR | Zbl

[27] Sekigawa, K.: Almost Hermitian manifolds satisfying some curvature conditions. Kodai Math. J. 2 (1979), 384–405. | DOI | MR | Zbl

[28] Sharma, R.: Almost Ricci solitons and K-contact geometry. Monatsh. Math. 175 (2014), 621–628. | DOI | MR | Zbl

[29] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979. | Zbl

[30] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R = 0$, The local version. J. Diff. Geom. 17 (1982), 531–582. | DOI | MR

[31] Tripathi, M. M.: Ricci solitons in contact metric manifolds. arXiv:0801,4222v1 [mathDG] 2008 (2008), 1–6.

[32] Yadav, S., Suthar, D. L.: Certain derivation on Lorentzian $\alpha $-Sasakian manifold. Global Journal of Science Frontier Research Mathematics and Decision Sciences 12, 2 (2012), 1–6. | MR