Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 29-40 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
Classification : 53C15, 53C40
Keywords: Trans-Sasakian manifold; $\xi $-projectively flat; $\phi $-projectively flat; Einstein manifold
@article{AUPO_2016_55_2_a3,
     author = {De, Krishnendu and De, Uday Chand},
     title = {Projective {Curvature} {Tensorin} 3-dimensional {Connected} {Trans-Sasakian} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {29--40},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1365.53030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a3/}
}
TY  - JOUR
AU  - De, Krishnendu
AU  - De, Uday Chand
TI  - Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 29
EP  - 40
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a3/
LA  - en
ID  - AUPO_2016_55_2_a3
ER  - 
%0 Journal Article
%A De, Krishnendu
%A De, Uday Chand
%T Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 29-40
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a3/
%G en
%F AUPO_2016_55_2_a3
De, Krishnendu; De, Uday Chand. Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 29-40. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a3/

[1] Bagewadi, C. S., Venkatesha, A.: Some curvature tensors on a trans-Sasakian manifold. Turk. J. Math. 31 (2007), 111–121. | MR | Zbl

[2] Blair, D. E.: Contact Manifolds in Riemannian Geometry. Lecture Note in Mathematics 509, Springer-Verlag, Berlin–New York, 1976. | MR | Zbl

[3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston, 2002 | MR | Zbl

[4] Blair, D. E., Oubina, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 34, 1 (1990), 199–207. | DOI | MR | Zbl

[5] Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., Zhen, G.: The structure of a class of K-contact manifolds. Acta Math. Hungar. 82, 4 (1999), 331–340. | DOI | MR | Zbl

[6] Chinea, D., Gonzales, C.: A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 156, 4 (1990), 15–36. | DOI | MR

[7] Chinea, D., Gonzales, C.: Curvature relations in trans-sasakian manifolds. In: Proceedings of the XIIth Portuguese–Spanish Conference on Mathematics II, Braga, 1987, Univ. Minho, Braga, 1987, 564–571. | MR

[8] De, U. C., De, K.: On a class of three- dimensional Trans-Sasakian manifold. Commun. Korean Math. Soc. 27 (2012), 795–808. | DOI | MR

[9] De, U. C., Sarkar, A.: On three-dimensional trans-Sasakian manifolds. Extracta Mathematicae 23, 3 (2008), 265–277. | MR | Zbl

[10] De, U. C., Tripathi, M. M.: Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J. 43, 2 (2003), 247–255. | MR | Zbl

[11] Gray, A., Hervella, L. M.: The sixteen classes of almost hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 4 (1980), 35–58. | DOI | MR | Zbl

[12] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1–27. | DOI | MR | Zbl

[13] Kim, J. S., Prasad, R., Tripathi, M. M.: On generalized ricci- recurrent trans- sasakian manifolds. J. Korean Math. Soc. 39 (2002), 953–961. | DOI | MR | Zbl

[14] Kowalski, O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y ).R = 0$. Czechoslovak Math. J. 46(121) (1996), 427–474. | MR

[15] Marrero, J. C.: The local structure of trans-sasakian manifolds. Ann. Mat. Pura Appl. 162, 4 (1992), 77–86. | DOI | MR | Zbl

[16] Marrero, J. C., Chinea, D.: On trans-sasakian manifolds. In: Proceedings of the XIVth Spanish–Portuguese Conference on Mathematics I-III, Puerto de la Cruz, 1989, Univ.La Laguna, La Laguna, 1990, 655–659. | MR

[17] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces. Sov. Math., Dokl. 34 (1987), 428–431. | MR | Zbl

[18] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. | MR | Zbl

[19] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sb. 32 (1989), 92–98. | MR | Zbl

[20] Mishra, R. S.: Structures on Differentiable Manifold and Their Applications. Chandrama Prakasana, Allahabad, 1984.

[21] Oubina, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen 32, 3-4 (1985), 187–193. | MR | Zbl

[22] Ozgur, C.: $\phi $-conformally flat Lorentzian Para-Sasakian manifolds. Radovi Matematicki 12 (2003), 99–106. | MR

[23] Shukla, S. S., Singh, D. D.: On $\epsilon $-trans-sasakian manifolds. Int. J. Math. Anal. 49 (2010), 2401–2414. | MR

[24] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979. | Zbl

[25] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X, Y ).R = 0$. J. Diff. Geom. 17 (1982), 531–582. | DOI | MR | Zbl

[26] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Math. Studies 32, Princeton Univ. Press, Princeton, 1953. | MR | Zbl

[27] Yano, K., Kon, M.: Structure on Manifolds. Series in Math. 3, World Scientific, Singapore, 1984. | MR

[28] Zhen, G., Cabrerizo, J. L., Fernandez, L. M., Fernandez, M.: On $\xi $-conformally flat contact metric manifolds. Indian J. Pure Appl. Math. 28 (1997), 725–734. | MR | Zbl