Characterization on Mixed Generalized Quasi-Einstein Manifold
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 143-155 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.
In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.
Classification : 53C25
Keywords: Einstein manifold; quasi-Einstein manifold; generalized quasi-Einstein manifold; mixed generalized quasi-Einstein manifold; super quasi-Einstein manifold; warped product
@article{AUPO_2016_55_2_a11,
     author = {Pahan, Sampa and Pal, Buddhadev and BHATTACHARYYA, Arindam},
     title = {Characterization on {Mixed} {Generalized} {Quasi-Einstein} {Manifold}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {143--155},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1365.53047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a11/}
}
TY  - JOUR
AU  - Pahan, Sampa
AU  - Pal, Buddhadev
AU  - BHATTACHARYYA, Arindam
TI  - Characterization on Mixed Generalized Quasi-Einstein Manifold
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 143
EP  - 155
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a11/
LA  - en
ID  - AUPO_2016_55_2_a11
ER  - 
%0 Journal Article
%A Pahan, Sampa
%A Pal, Buddhadev
%A BHATTACHARYYA, Arindam
%T Characterization on Mixed Generalized Quasi-Einstein Manifold
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 143-155
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a11/
%G en
%F AUPO_2016_55_2_a11
Pahan, Sampa; Pal, Buddhadev; BHATTACHARYYA, Arindam. Characterization on Mixed Generalized Quasi-Einstein Manifold. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 143-155. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a11/

[1] Baishya, K. K., Peška, P.: On the example of almost pseudo-Z-symmetric manifolds. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 55, 1 (2016), 5–40. | MR | Zbl

[2] Bejan, C. L.: Characterization of quasi Einstein manifolds. An. Stiint. Univ.“Al. I. Cuza” Iasi Mat. (N.S.) 53, suppl. 1 (2007), 67–72. | MR

[3] Besse, A. L.: Einstein Manifolds. Springer-Verlag, New York, 1987. | MR | Zbl

[4] Bhattacharya,, A., De, T.: On mixed generalized quasi Einstein manifolds. Differ. Geom. Dyn. Syst. 9 (2007), 40–46, (electronic). | MR

[5] Bishop, R. L., O’Neill, B.: Geometry of slant Submanifolds. Trans. Amer. Math. Soc. 145 (1969), 1–49. | MR

[6] Chaki, M. C.: On super quasi-Einstein manifolds. Publ. Math. Debrecen 64 (2004), 481–488. | MR | Zbl

[7] Chen, B. Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japan. J. Math. (N.S.) 26 (2000), 105–127. | DOI | MR | Zbl

[8] De, U. C., Ghosh, G. C.: On generalized quasi-Einstein manifolds. Kyungpook Math. J. 44 (2004), 607–615. | MR | Zbl

[9] Deszcz, R., Glogowska, M., Holtos, M., Senturk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces. Annl. Univ. Sci. Budapest. Eötvös Sect. Math 41 (1998), 151–164. | MR

[10] Dumitru, D.: On Einstein spaces of odd dimension. Bul. Transilv. Univ. Brasov Ser. B (N.S.) 14, suppl. 49 (2007), 95–97. | MR | Zbl

[11] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces. Ann. Sci. Stetinenses 9 (1994), 31–40.

[12] Halder, K., Pal, B., Bhattacharya, A., De, T.: Characterization of super quasi Einstein manifolds. An. Stiint. Univ.“Al. I. Cuza” Iasi Mat. (N.S.) 60, 1 (2014), 99–108. | MR

[13] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces. In: Geometric methods in physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. | MR | Zbl

[14] Kagan, V. F.: Subprojective Spaces. Fizmatgiz, Moscow, 1961.

[15] O'Neill, B.: Semi-Riemannian Geometry wih Applications to Relativity.

[16] Mikeš, J.: Geodesic mapping of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[17] Mikeš, J.: Geodesic mappings of special Riemannian spaces. In: Coll. Math. Soc. J. Bolyai 46, Topics in Diff. Geom. Debrecen (Hungary), 1984, Amsterdam, 1988, 793–813. | MR

[18] Mikeš, J.: Geodesic mappings of Einstein spaces. Math. Notes 28 (1981), 922–923. | DOI | MR | Zbl

[19] Mikeš, J.: Differential geometry of special mappings. Palacky Univ. Press, Olomouc, 2015. | MR | Zbl

[20] Singer, I. M., Thorpe, J. A.: The curvature of 4-dimensional Einstein spaces. In: Global Analysis (Papers in honor of K. Kodaira, Princeton Univ. Press, Princeton, 1969, 355–365. | Zbl