Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 129-142
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^{\prime }\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac{d}{dt}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \] The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$.
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^{\prime }\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac{d}{dt}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \] The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$.
Classification :
34K20, 34K30, 34K40, 47H10
Keywords: Fixed point; stability; delay; stability; nonlinear neutral equation; large contraction mapping; integral equation
Keywords: Fixed point; stability; delay; stability; nonlinear neutral equation; large contraction mapping; integral equation
@article{AUPO_2016_55_2_a10,
author = {MESMOULI, Mouataz Billah and Ardjouni, Abdelouaheb and Djoudi, Ahcene},
title = {Study of {Stability} in {Nonlinear} {Neutral} {Differential} {Equations} with {Variable} {Delay} {Using} {Krasnoselskii{\textendash}Burton{\textquoteright}s} {Fixed} {Point}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {129--142},
year = {2016},
volume = {55},
number = {2},
zbl = {06724368},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a10/}
}
TY - JOUR AU - MESMOULI, Mouataz Billah AU - Ardjouni, Abdelouaheb AU - Djoudi, Ahcene TI - Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 129 EP - 142 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a10/ LA - en ID - AUPO_2016_55_2_a10 ER -
%0 Journal Article %A MESMOULI, Mouataz Billah %A Ardjouni, Abdelouaheb %A Djoudi, Ahcene %T Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 129-142 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a10/ %G en %F AUPO_2016_55_2_a10
MESMOULI, Mouataz Billah; Ardjouni, Abdelouaheb; Djoudi, Ahcene. Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 129-142. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a10/