On Almost Generalized Weakly Symmetric Kenmotsu Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 5-15 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper aims to introduce the notions of an almost generalized weakly symmetric Kenmotsu manifolds and an almost generalized weakly Ricci-symmetric Kenmotsu manifolds. The existence of an almost generalized weakly symmetric Kenmotsu manifold is ensured by a non-trivial example.
This paper aims to introduce the notions of an almost generalized weakly symmetric Kenmotsu manifolds and an almost generalized weakly Ricci-symmetric Kenmotsu manifolds. The existence of an almost generalized weakly symmetric Kenmotsu manifold is ensured by a non-trivial example.
Classification : 53C15, 53C25
Keywords: Almost generalized weakly symmetric Kenmotsu manifolds; almost generalized weakly Ricci-symmetric Kenmotsu manifolds
@article{AUPO_2016_55_2_a0,
     author = {Baishya, Kanak Kanti and Chowdhury, Partha Roy and Mike\v{s}, Josef and Pe\v{s}ka, Patrik},
     title = {On {Almost} {Generalized} {Weakly} {Symmetric} {Kenmotsu} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--15},
     year = {2016},
     volume = {55},
     number = {2},
     zbl = {1365.53028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a0/}
}
TY  - JOUR
AU  - Baishya, Kanak Kanti
AU  - Chowdhury, Partha Roy
AU  - Mikeš, Josef
AU  - Peška, Patrik
TI  - On Almost Generalized Weakly Symmetric Kenmotsu Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 5
EP  - 15
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a0/
LA  - en
ID  - AUPO_2016_55_2_a0
ER  - 
%0 Journal Article
%A Baishya, Kanak Kanti
%A Chowdhury, Partha Roy
%A Mikeš, Josef
%A Peška, Patrik
%T On Almost Generalized Weakly Symmetric Kenmotsu Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 5-15
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a0/
%G en
%F AUPO_2016_55_2_a0
Baishya, Kanak Kanti; Chowdhury, Partha Roy; Mikeš, Josef; Peška, Patrik. On Almost Generalized Weakly Symmetric Kenmotsu Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 5-15. http://geodesic.mathdoc.fr/item/AUPO_2016_55_2_a0/

[1] Baishya, K. K.: On generalized semi-pseudo symmetric manifold. submitted.

[2] Baishya, K. K.: On generalized pseudo symmetric manifold. submitted.

[3] Baishya, K. K.: On almost generalized pseudo symmetric manifolds. submitted.

[4] Chaki, M. C.: On pseudo Ricci symmetric manifolds. Bulg. J. Physics 15 (1988), 526–531. | MR | Zbl

[5] Chaki, M. C., Kawaguchi, T.: On almost pseudo Ricci symmetric manifolds. Tensor 68, 1 (2007), 10–14. | MR | Zbl

[6] Deszcz, R., Glogowska, M., Hotlos, M., Senturk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces. Annales Univ. Sci. Budapest. Eotovos Sect. Math. 41 (1998), 151–164. | MR | Zbl

[7] Dey, S. K., Baishya, K. K.: On the existence of some types on Kenmotsu manifolds. Universal Journal of Mathematics and Mathematical Sciences 3, 2 (2014), 13–32.

[8] Dubey, R. S. D.: Generalized recurrent spaces. Indian J. Pure Appl. Math. 10 (1979), 1508–1513. | MR | Zbl

[9] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1–27. | DOI | MR | Zbl

[10] June, J. B., Dey, U. C., Pathak, G.: On Kenmotsu manifolds. J. Korean Math. Soc. 42, 3 (2005), 435–445. | DOI | MR

[11] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Mathematical Journal 24, 1 (1972), 93–103. | DOI | MR | Zbl

[12] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2, 1 (2009), 125–133.

[13] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces. Archives at VINITI, Odessk. Univ., Moscow, 1976.

[14] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28 (1981), 622–624. | DOI | MR

[15] Mikeš, J.: On geodesic mappings of Einstein spaces. Math. Notes 28 (1981), 922–923. | DOI | MR

[16] Mikeš, J.: On geodesic mappings of $m$-symmetric and generally semi-symmetric spaces. Russ. Math. 36, 8, (1992), 38–42. | MR | Zbl

[17] Mikeš, J.: On geodesic and holomorphic-projective mappings of generalized $m$-recurrent Riemannian spaces. Sib. Mat. Zh. 33, 5 (1992), 215–215. | Zbl

[18] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[19] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89, 3 (1998), 1334–1353. | DOI | MR

[20] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacky Univ. Press, Olomouc, 2009. | MR | Zbl

[21] Patterson, E. M.: Some theorems on Ricci recurrent spaces. J. London. Math. Soc., 27 (1952), 287–295. | DOI | MR | Zbl

[22] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. In: Publ. Comp. Colloq. Math. Soc. János Bolyai 56, North-Holland Publ., Amsterdam, 1992, 663–670. | MR | Zbl

[23] Tarafdar, M., Jawarneh, Musa A. A.: Semi-pseudo Ricci symmetric manifold. J. Indian. Inst. of Science, 73 (1993), 591–596. | MR

[24] Walker, A. G.: On Ruse’s space of recurrent curvature. Proc. London Math. Soc., 52 (1950), 36–54. | DOI | MR

[25] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics 3, World Scientific Publishing Singapore, 1984. | MR | Zbl