Keywords: Image segmentation; background subtraction; foreground detection; thresholding; computational efficiency; classification trees; classification accuracy
@article{AUPO_2016_55_1_a9,
author = {Mola, Francesco and Antoch, Jarom{\'\i}r and Frigau, Luca and Conversano, Claudio},
title = {Classification of {Images} {Background} {Subtraction} in {Image} {Segmentation}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {73--86},
year = {2016},
volume = {55},
number = {1},
mrnumber = {3674602},
zbl = {1362.62135},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a9/}
}
TY - JOUR AU - Mola, Francesco AU - Antoch, Jaromír AU - Frigau, Luca AU - Conversano, Claudio TI - Classification of Images Background Subtraction in Image Segmentation JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 73 EP - 86 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a9/ LA - en ID - AUPO_2016_55_1_a9 ER -
%0 Journal Article %A Mola, Francesco %A Antoch, Jaromír %A Frigau, Luca %A Conversano, Claudio %T Classification of Images Background Subtraction in Image Segmentation %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 73-86 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a9/ %G en %F AUPO_2016_55_1_a9
Mola, Francesco; Antoch, Jaromír; Frigau, Luca; Conversano, Claudio. Classification of Images Background Subtraction in Image Segmentation. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a9/
[1] Badekas, E., Papamarkos, N.: Automatic evaluation of document binarization results. In: Progress in pattern recognition, image analysis and applications. Springer, Heidelberg, 2005.
[2] Breiman, L., Friedman, J., Olshen, L., Stone, J.: Classification and Regression Trees. CRC Press, Boca Raton, FL, 1984. | Zbl
[3] Chan, T., Shen, J.: Image Processing and Analysis. Stochastic Methods. SIAM, Philadelphia, PA, 2005. | MR
[4] Crow, F.: Summed-area tables for texture mapping. In: SIGGRAPH ’84: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, 1984, 207–212.
[5] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed., Springer, Heidelberg, 2009. | MR | Zbl
[6] Hunt, R. W. G.: The Reproduction of Colour. 6th ed., J. Wiley, Chichester, UK, 2004.
[7] Mola, F., Siciliano, R.: A fast splitting algorithm for classification trees. Statistics and Computing 7 (1997), 209–216. | DOI
[8] Munoz, X., Freixenet, J., Cufi, X., Mart, J.: Strategies for image segmentation combining region and boundary information. Pattern Recognition Letters 24 (2003), 375–392. | DOI
[9] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. on Systemn, Man and Cybernetics 9 (1979), 62–66. | DOI
[10] Padmavathi, G., Subashini, P., Sumi, A.: Empirical evaluation of suitable segmentation algorithms for IR images. IJCSI Int. J. of Computer Science Issues 7 (2010), http://ijcsi.org/contents.php?volume=7&&issue=4
[11] Piccardi, M.: Background subtraction techniques: a review. IEEE Trans. on Systemn, Man and Cybernetics 4 (2004), 62–3104.
[12] Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognition 33 (2000), 225–236. | DOI
[13] Shafait, F., Keysers, D., Breuel, T. M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Electronic Imaging 2008, International Society for Optics and Photonics, 2008.
[14] Shapiro, L. G., Stockman, G. C.: Computer Vision. Prentice-Hall, New Jersey, 2001.
[15] Šonka, M., Hlaváč, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. 4th ed., Cengage Learning, UK, 2014.