Almost Contact B-metric Manifoldsas Extensions of a 2-dimensional Space-form
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 59-71 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of investigations are almost contact B-metric manifolds which are derived as a product of a real line and a 2-dimensional manifold equipped with a complex structure and a Norden metric. There are used two different methods for generation of the B-metric on the product manifold. The constructed manifolds are characterised with respect to the Ganchev–Mihova–Gribachev classification and their basic curvature properties.
The object of investigations are almost contact B-metric manifolds which are derived as a product of a real line and a 2-dimensional manifold equipped with a complex structure and a Norden metric. There are used two different methods for generation of the B-metric on the product manifold. The constructed manifolds are characterised with respect to the Ganchev–Mihova–Gribachev classification and their basic curvature properties.
Classification : 53C15, 53C50
Keywords: Almost contact manifold; B-metric; cone; $S^1$-solvable extension; complex space-form; Norden metric
@article{AUPO_2016_55_1_a8,
     author = {Manev, Hristo M.},
     title = {Almost {Contact} {B-metric} {Manifoldsas} {Extensions} of a 2-dimensional {Space-form}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {59--71},
     year = {2016},
     volume = {55},
     number = {1},
     mrnumber = {3674601},
     zbl = {1365.53035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a8/}
}
TY  - JOUR
AU  - Manev, Hristo M.
TI  - Almost Contact B-metric Manifoldsas Extensions of a 2-dimensional Space-form
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 59
EP  - 71
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a8/
LA  - en
ID  - AUPO_2016_55_1_a8
ER  - 
%0 Journal Article
%A Manev, Hristo M.
%T Almost Contact B-metric Manifoldsas Extensions of a 2-dimensional Space-form
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 59-71
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a8/
%G en
%F AUPO_2016_55_1_a8
Manev, Hristo M. Almost Contact B-metric Manifoldsas Extensions of a 2-dimensional Space-form. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 59-71. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a8/

[1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston, 2002. | MR | Zbl

[2] Ganchev, G., Borisov, A.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulg. Sci. 39 (1986), 31–34. | MR | Zbl

[3] Ganchev, G., Mihova, V., Gribachev, K.: Almost contact manifolds with B-metric. Math. Balkanica (N.S.) 7 (1993), 261–276. | MR | Zbl

[4] Gribachev, K., Mekerov, D., Djelepov, G.: Generalized B-manifolds. C. R. Acad. Bulg. Sci. 38 (1985), 299–302. | MR

[5] Ivanov, S., Manev, H., Manev, M.: Sasaki-like almost contact complex Riemannian manifolds. arXiv.org arXiv:1402.5426 (2014), 1–19. | MR

[6] Manev, H.: On the structure tensors of almost contact B-metric manifolds. Filomat 29 (2015), 427–436. | DOI | MR

[7] Manev, H.: Almost contact B-metric structures and the Bianchi classification of the three-dimensional Lie algebras. arXiv.org arXiv:1412.8142 (2014), 1–12. | MR

[8] Manev, H.: Matrix Lie groups as 3-dimensional almost contact B-metric manifolds. Facta Universitatis (Niš), Ser. Math. Inform 30, 3 (2015), 341–351, arXiv:1503.00312. | MR

[9] Manev, H.: Space-like and time-like hyperspheres in real pseudo-Riemannian 4-spaces with almost contact B-metric structures. arXiv.org arXiv:1504.00267 (2015), 1–8. | MR

[10] Manev, H., Mekerov, D.: Lie groups as 3-dimensional almost contact B-metric manifolds. J. Geom. 106 (2015), 229–242. | DOI | MR | Zbl

[11] Manev, M.: Natural connection with totally skew-symmetric torsion on almost contact manifolds with B-metric. Int. J. Geom. Methods Mod. Phys. 9, 1250044 (2012), 1–20. | DOI | MR | Zbl

[12] Manev, M., Gribachev, K.: Contactly conformal transformations on almost contact manifolds with B-metric. Serdica Math. J. 19 (1993), 287–299. | MR

[13] Manev, M., Gribachev, K.: Conformally invariant tensors on almost contact manifolds with B-metric. Serdica Math. J. 20 (1994), 133–147. | MR | Zbl

[14] Manev, M., Ivanova, M.: Canonical type connections on almost contact manifold with B-matric. Ann. Global Anal. Geom. 43, 4 (2013), 397–408. | DOI | MR

[15] Manev, M., Ivanova, M.: A classification of the torsion tensors on almost contact manifolds with B-metric. Cent. Eur. J. Math. 12 (2014), 1416–1432. | MR | Zbl

[16] Mekerov, D., Manev, M.: On the geometry of quasi-Kähler manifolds with Norden metric. Nihonkai Math. J. 16 (2005), 89–93. | MR | Zbl

[17] Nakova, G., Gribachev, K.: Submanifolds of some almost contact manifolds with B-metric with codimension two, I. Math. Balkanica (N.S.) 11 (1997), 255–267. | MR | Zbl