Keywords: Group of invertible elements; algebra of quaternions; principal locally trivial bundle; 2-dimensional subalgebras; structural group; unit; Hopf fibration
@article{AUPO_2016_55_1_a7,
author = {Kuzmina, Irina~A. and Chodorov\'a, Marie},
title = {The {Group} of {Invertible} {Elements} of the {Algebra} of {Quaternions}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {53--58},
year = {2016},
volume = {55},
number = {1},
mrnumber = {3674600},
zbl = {1362.16024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a7/}
}
TY - JOUR AU - Kuzmina, Irina A. AU - Chodorová, Marie TI - The Group of Invertible Elements of the Algebra of Quaternions JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 53 EP - 58 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a7/ LA - en ID - AUPO_2016_55_1_a7 ER -
%0 Journal Article %A Kuzmina, Irina A. %A Chodorová, Marie %T The Group of Invertible Elements of the Algebra of Quaternions %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 53-58 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a7/ %G en %F AUPO_2016_55_1_a7
Kuzmina, Irina A.; Chodorová, Marie. The Group of Invertible Elements of the Algebra of Quaternions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 1, pp. 53-58. http://geodesic.mathdoc.fr/item/AUPO_2016_55_1_a7/
[1] Alekseevsky, D. V., Marchiafava, S., Pontecorvo, M.: Compatible complex structures on almost quaternionic manifolds. Trans. Amer. Math. Soc. 351, 3 (1999), 997–1014. | DOI | MR | Zbl
[2] Bělohlávková, J., Mikeš, J., Pokorná, O.: On 4-planar mappings of special almost antiquaternionic spaces. Rend. Circ. Mat. Palermo, II. Ser. 66 (2001), 97–103. | MR | Zbl
[3] Bělohlávková, J., Mikeš, J., Pokorná, O.: 4-planar mappings of almost quaternionic and almost antiquaternionic spaces. Gen. Math. 5 (1997), 101–108. | MR | Zbl
[4] Belova, N. E.: Bundles of Algebras of Dimension 4. Kazan. Dep. in VINITI, Kazan University 3037-B99, Kazan, 1999.
[5] Belova, N. E.: Bundles defined by associative algebras. Diss. on scientific degree candidate Sci., Science competition, Kazan University, Kazan, 2001.
[6] Berger, M.: Geometry I. Springer, New York–Berlin–Heidelberg, 1987. | Zbl
[7] Bushmanova, G. V., Norden, A. P.: Elements of conformal geometry. Kazan University, Kazan, 1972. | MR
[8] Dubrovin, B. A., Novikov, S. P., Fomenko, A. T.: Modern Geometry. Methods and Applications. Nauka, Moscow, 1979. | MR
[9] Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry. Ann. Global Anal. Geom. 29, 4 (2006), 343–354. | DOI | MR | Zbl
[10] Hinterleitner, I.: 4-planar mappings of quaternionic Kähler manifolds. In: Geometric methods in physics, 31 workshop, Białowieża, Poland, June 24–30, 2012. Selected papers based on the presentations at the workshop, Birkhäuser/Springer, Basel, (2013), 187–193. | MR | Zbl
[11] Kurbatova, I. N.: 4-quasi-planar mappings of almost quaternion manifolds. Sov. Math. 30 (1986), 100–104, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1 (1986), 75–78. | Zbl
[12] Kuzmina, I. A., Mikeš, J., Vanžurová, A.: The projectivization of conformal models of fibrations determined by the algebra of quaternions. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 50, 1 (2011), 91–98. | MR | Zbl
[13] Kuzmina, I., Mikeš, J.: On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them. Ann. Math. Inform. 42 (2013), 57–64. | MR | Zbl
[14] Mikeš, J., Bělohlávková, J., Pokorná, O.: On special 4-planar mappings of almost Hermitian quaternionic spaces. In: Proc. 2nd Meeting on Quaternionic Structures in Math. and Phys., electronic only, Roma, Italy, September 6–10, 1999, Dip. di Matematica “Guido Castelnuovo”, Univ. di Roma “La Sapienza”, Rome, (2001), 265–271. | MR | Zbl
[15] Mikeš, J., Jukl, M., Juklová, L.: Some results on traceless decomposition of tensors. J. Math. Sci., New York 174, 5 (2011), 627–640; translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 124, 1 (2010). | DOI | MR | Zbl
[16] Jukl, M., Juklová, L., Mikeš, J.: Applications of local algebras of differentiable manifolds. J. Math. Sci., New York 207, 3 (2015), 485–511; translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 126 (2013), 219–261. | DOI | Zbl
[17] Norden, A. P.: Spaces of Affine Connection. Nauka, Moscow, 1976. | MR
[18] Postnikov, M. M.: Lectures on the Geometry. Semester IV. Differential Geometry. Nauka, Moscow, 1988. | MR
[19] Rozenfeld, B. A.: Higher-dimensional Spaces. Nauka, Moscow, 1966.
[20] Rozenfeld, B. A.: Geometry of Lie Groups. Kluwer, Dordrecht–Boston–London, 1997.
[21] Shapukov, B. N.: Connections on a differential fibred bundle. Tr. Geom. Sem. Kazan. Univ. 12 (1980), 97–109. | MR
[22] Vishnevsky, V. V., Shirokov, A. P., Shurygin, V. V.: Spaces over Algebras (Prostranstva nad algebrami). Kazan University Press, Kazan’, 1985, (in Russian).